A bio-inspired time synchronization algorithm for wireless sensor networks

In a Wireless Sensor Network (WSN), time synchronization is highly desired because data collected from agglomerated sensors become truly meaningful when they are stamped with accurate time. Most of current studies on time synchronization continue to adapt algorithms from a general distributed system. Inspired by Optimal Foraging Theory (OFT) in ecology, we proposed a novel algorithm for time synchronization in wireless sensor networks in this paper. The new strategy reduces or avoids redundant message exchange in time synchronization and extends the lifetime of a sensor network by reducing energy expenditure of time synchronization.

[1]  Baruch Awerbuch,et al.  A New Distributed Depth-First-Search Algorithm , 1985, Inf. Process. Lett..

[2]  Jan M. Rabaey,et al.  Lightweight time synchronization for sensor networks , 2003, WSNA '03.

[3]  J. Elson,et al.  Fine-grained network time synchronization using reference broadcasts , 2002, OSDI '02.

[4]  R. Macarthur,et al.  On Optimal Use of a Patchy Environment , 1966, The American Naturalist.

[5]  J. Emlen The Role of Time and Energy in Food Preference , 1966, The American Naturalist.

[6]  Deborah Estrin,et al.  Time synchronization for wireless sensor networks , 2001, Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001.

[7]  Mihail L. Sichitiu,et al.  Simple, accurate time synchronization for wireless sensor networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[9]  Amit Kumar Saha,et al.  Adaptive clock synchronization in sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[10]  Andrew S. Tanenbaum,et al.  Distributed systems: Principles and Paradigms , 2001 .

[11]  Michael Roche Time Synchronization in Wireless Networks , 2006 .

[12]  A. Föhrenbach,et al.  SIMPLE++ , 2000, OR Spectr..

[13]  Eric Alden Smith,et al.  Human adaptation and energetic efficiency , 1979 .

[14]  Kristina Lerman,et al.  Mathematical Model of Foraging in a Group of Robots: Effect of Interference , 2002, Auton. Robots.

[15]  Eric R. Pianka,et al.  Natural Selection of Optimal Reproductive Tactics , 1976 .

[16]  Keith J. O'Hara,et al.  Navigation Networks : Biological Inspiration for Large-Scale Multi-Robot Navigation , 2003 .

[17]  G. Pyke Optimal Foraging Theory: A Critical Review , 1984 .

[18]  James H. Fowler,et al.  On the Evolutionary Origin of Prospect Theory Preferences , 2008, The Journal of Politics.