Intrinsic properties and functional circuitry of the AII amacrine cell

Abstract Amacrine cells represent the most diverse class of retinal neuron, comprising dozens of distinct cell types. Each type exhibits a unique morphology and generates specific visual computations through its synapses with a subset of excitatory interneurons (bipolar cells), other amacrine cells, and output neurons (ganglion cells). Here, we review the intrinsic and network properties that underlie the function of the most common amacrine cell in the mammalian retina, the AII amacrine cell. The AII connects rod and cone photoreceptor pathways, forming an essential link in the circuit for rod-mediated (scotopic) vision. As such, the AII has become known as the rod–amacrine cell. We, however, now understand that AII function extends to cone-mediated (photopic) vision, and AII function in scotopic and photopic conditions utilizes the same underlying circuit: AIIs are electrically coupled to each other and to the terminals of some types of ON cone bipolar cells. The direction of signal flow, however, varies with illumination. Under photopic conditions, the AII network constitutes a crossover inhibition pathway that allows ON signals to inhibit OFF ganglion cells and contributes to motion sensitivity in certain ganglion cell types. We discuss how the AII’s combination of intrinsic and network properties accounts for its unique role in visual processing.

[1]  Angus C Nairn,et al.  DARPP-32: an integrator of neurotransmission. , 2004, Annual review of pharmacology and toxicology.

[2]  Wei Li,et al.  Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. , 2005, Journal of neurophysiology.

[3]  C. M. Davenport,et al.  Parallel ON and OFF Cone Bipolar Inputs Establish Spatially Coextensive Receptive Field Structure of Blue-Yellow Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[4]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  T. Lamb Evolution of vertebrate retinal photoreception , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  F. Rieke,et al.  Voltage-Gated Na Channels in AII Amacrine Cells Accelerate Scotopic Light Responses Mediated by the Rod Bipolar Cell Pathway , 2010, The Journal of Neuroscience.

[7]  J. Nathans,et al.  A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina , 1998, Neuron.

[8]  T. Lamb,et al.  The relation between intercellular coupling and electrical noise in turtle photoreceptors. , 1976, The Journal of physiology.

[9]  P Gouras,et al.  Rod and cone interaction in dark‐adapted monkey ganglion cells , 1966, The Journal of physiology.

[10]  R. Pourcho,et al.  Transmitter‐specific input to OFF‐alpha ganglion cells in the cat retina , 1999, The Anatomical record.

[11]  J. B. Demb,et al.  Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities , 2003, The Journal of Neuroscience.

[12]  R. Weiler,et al.  Protein Kinase A-mediated Phosphorylation of Connexin36 in Mouse Retina Results in Decreased Gap Junctional Communication between AII Amacrine Cells* , 2006, Journal of Biological Chemistry.

[13]  D. Protti,et al.  Calcium Currents and Calcium Signaling in Rod Bipolar Cells of Rat Retinal Slices , 1998, The Journal of Neuroscience.

[14]  Helga Kolb,et al.  Rod pathways in the retina of the cat , 1983, Vision Research.

[15]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[16]  H. Wässle,et al.  Receptive field properties of ON- and OFF-ganglion cells in the mouse retina , 2009, Visual Neuroscience.

[17]  S. Massey,et al.  Rod pathways in the mammalian retina use connexin 36 , 2001, The Journal of comparative neurology.

[18]  R H Masland,et al.  The number of unidentified amacrine cells in the mammalian retina. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Bloomfield,et al.  Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina , 2000, The Journal of physiology.

[20]  S. Massey,et al.  Gap junctions between AII amacrine cells and calbindin-positive bipolar cells in the rabbit retina , 1999, Visual Neuroscience.

[21]  J. B. Demb,et al.  Cellular Basis for the Response to Second-Order Motion Cues in Y Retinal Ganglion Cells , 2001, Neuron.

[22]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[23]  S. Massey,et al.  Confocal Analysis of Reciprocal Feedback at Rod Bipolar Terminals in the Rabbit Retina , 2002, The Journal of Neuroscience.

[24]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[25]  S. Bloomfield,et al.  Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina , 2002, Neuron.

[26]  F. Rieke,et al.  Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity , 2002, Neuron.

[27]  Fred Rieke,et al.  Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells , 2008, Nature Neuroscience.

[28]  F. Rieke,et al.  Controlling the Gain of Rod-Mediated Signals in the Mammalian Retina , 2006, The Journal of Neuroscience.

[29]  D. I. Vaney,et al.  Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin , 1991, Neuroscience Letters.

[30]  E. Hartveit,et al.  Functional Properties of Spontaneous EPSCs and non‐NMDA Receptors in Rod Amacrine (AII) Cells in the Rat Retina , 2003, The Journal of physiology.

[31]  M. Alpern Rod—cone independence in the after‐flash effects , 1965, The Journal of physiology.

[32]  L. Peichl,et al.  An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P Sterling,et al.  Convergence and divergence of cones onto bipolar cells in the central area of cat retina. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  E. Strettoi,et al.  Cone bipolar cells as interneurons in the rod, pathway of the rabbit retina , 1994, The Journal of comparative neurology.

[35]  P Sterling,et al.  The ON-alpha ganglion cell of the cat retina and its presynaptic cell types , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Wei Li,et al.  Stratification of alpha ganglion cells and ON/OFF directionally selective ganglion cells in the rabbit retina , 2005, Visual Neuroscience.

[37]  E. Hartveit,et al.  Electrical Synapses Mediate Signal Transmission in the Rod Pathway of the Mammalian Retina , 2002, The Journal of Neuroscience.

[38]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[39]  J. B. Demb,et al.  Disinhibition Combines with Excitation to Extend the Operating Range of the OFF Visual Pathway in Daylight , 2008, The Journal of Neuroscience.

[40]  S. Bloomfield,et al.  Light-induced modulation of coupling between AII amacrine cells in the rabbit retina , 1997, Visual Neuroscience.

[41]  H. Barlow,et al.  Dark adaptation, absolute threshold and purkinje shift in single units of the cat's retina , 1957, The Journal of physiology.

[42]  Jiook Cha,et al.  Synaptic connections of calbindin-immunoreactive cone bipolar cells in the inner plexiform layer of rabbit retina , 2010, Cell and Tissue Research.

[43]  R. Nelson,et al.  Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat , 1977, The Journal of comparative neurology.

[44]  D. Mastronarde Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. , 1983, Journal of neurophysiology.

[45]  D. Mastronarde,et al.  Exploring the retinal connectome , 2011, Molecular vision.

[46]  R. Weiler,et al.  Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[48]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[49]  J. C. Nelson,et al.  Neurotransmitter Coupling through Gap Junctions in the Retina , 1998, The Journal of Neuroscience.

[50]  H. Wässle,et al.  Immunohistochemical Localization of Dopamine D Receptors in Rat Retina , 1996, The European journal of neuroscience.

[51]  E. Trexler,et al.  Differential output of the high‐sensitivity rod photoreceptor: AII amacrine pathway , 2008, The Journal of comparative neurology.

[52]  Ethan D. Cohen,et al.  The network-selective actions of quinoxalines on the neurocircuitry operations of the rabbit retina , 1999, Brain Research.

[53]  R. Weiler,et al.  Deletion of Connexin45 in Mouse Retinal Neurons Disrupts the Rod/Cone Signaling Pathway between AII Amacrine and ON Cone Bipolar Cells and Leads to Impaired Visual Transmission , 2005, The Journal of Neuroscience.

[54]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[55]  B. Boycott,et al.  The connections between bipolar cells and photoreceptors in the retina of the domestic cat , 1973, The Journal of comparative neurology.

[56]  Ji-Jie Pang,et al.  Relative contributions of rod and cone bipolar cell inputs to AII amacrine cell light responses in the mouse retina , 2007, The Journal of physiology.

[57]  S. Massey,et al.  Differential properties of two gap junctional pathways made by AII amacrine cells , 1995, Nature.

[58]  Mark C. W. van Rossum,et al.  Noise removal at the rod synapse of mammalian retina , 1998, Visual Neuroscience.

[59]  S. Massey,et al.  A calbindin‐immunoreactive cone bipolar cell type in the rabbit retina , 1996, The Journal of comparative neurology.

[60]  S. Massey,et al.  Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling , 2009, The Journal of Neuroscience.

[61]  J. Diamond,et al.  Sustained Ca2+ Entry Elicits Transient Postsynaptic Currents at a Retinal Ribbon Synapse , 2003, The Journal of Neuroscience.

[62]  Eun-Jin Lee,et al.  Synaptic connections of cone bipolar cells that express the neurokinin 1 receptor in the rabbit retina , 2005, Cell and Tissue Research.

[63]  H. Wässle,et al.  Pharmacological modulation of the rod pathway in the cat retina. , 1988, Journal of neurophysiology.

[64]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[65]  H. Wassle,et al.  Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  R. Weiler,et al.  Expression of Neuronal Connexin36 in AII Amacrine Cells of the Mammalian Retina , 2001, The Journal of Neuroscience.

[67]  B. Sakitt Counting every quantum , 1972, The Journal of physiology.

[68]  Zhiyin Liang,et al.  The ON Pathway Rectifies the OFF Pathway of the Mammalian Retina , 2010, The Journal of Neuroscience.

[69]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[70]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[71]  S. Massey,et al.  Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina , 2004, The Journal of comparative neurology.

[72]  F. Rieke,et al.  Selective Transmission of Single Photon Responses by Saturation at the Rod-to-Rod Bipolar Synapse , 2004, Neuron.

[73]  R. Dacheux,et al.  Connections of two types of flat cone bipolars in the rabbit retina , 1996, The Journal of comparative neurology.

[74]  Grant S. Nichols,et al.  DARPP‐32‐like immunoreactivity in AII amacrine cells of rat retina , 2004, The Journal of comparative neurology.

[75]  Alyosha C. Molnar,et al.  Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission , 2009, Journal of Computational Neuroscience.

[76]  S. Bloomfield,et al.  Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina , 1999, Visual Neuroscience.

[77]  J. B. Demb,et al.  Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.

[78]  D. Marshak,et al.  Synaptic connections of DB3 diffuse bipolar cell axons in macaque retina , 2000, The Journal of comparative neurology.

[79]  J. L. Schnapf,et al.  Photovoltage of rods and cones in the macaque retina. , 1995, Science.

[80]  Mario Pieper,et al.  Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina , 2006, The European journal of neuroscience.

[81]  Robert G. Smith,et al.  The AII Amacrine Network: Coupling can Increase Correlated Activity , 1996, Vision Research.

[82]  Ji-Jie Pang,et al.  Light‐evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark‐adapted mouse retina , 2004, The Journal of physiology.

[83]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  N. Issa,et al.  Subcortical Representation of Non-Fourier Image Features , 2010, The Journal of Neuroscience.

[85]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[86]  Heinz Wässle,et al.  The rod pathway of the macaque monkey retina: Identification of AII‐amacrine cells with antibodies against calretinin , 1995, The Journal of comparative neurology.

[87]  Jonathon Shlens,et al.  High sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina , 2009, Nature Neuroscience.

[88]  H. Young,et al.  Rod‐signal interneurons in the rabbit retina: 1. Rod bipolar cells , 1991, The Journal of comparative neurology.

[89]  E. Strettoi,et al.  Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina , 1992, The Journal of comparative neurology.

[90]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[91]  H. Kolb,et al.  Off‐alpha and OFF‐beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains , 1993, The Journal of comparative neurology.

[92]  S. Massey,et al.  Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Frank S Werblin,et al.  Six different roles for crossover inhibition in the retina: Correcting the nonlinearities of synaptic transmission , 2010, Visual Neuroscience.

[94]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[95]  Joel Pokorny,et al.  Rod inputs to macaque ganglion cells , 1997, Vision Research.

[96]  M Tessier-Lavigne,et al.  The effect of photoreceptor coupling and synapse nonlinearity on signal : noise ratio in early visual processing , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[97]  E. Hartveit,et al.  AII (Rod) Amacrine Cells Form a Network of Electrically Coupled Interneurons in the Mammalian Retina , 2002, Neuron.

[98]  T. Jarsky,et al.  Nanodomain Control of Exocytosis Is Responsible for the Signaling Capability of a Retinal Ribbon Synapse , 2010, The Journal of Neuroscience.

[99]  B. Völgyi,et al.  Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina , 2004, The Journal of Neuroscience.

[100]  H. Young,et al.  Rod‐signal interneurons in the rabbit retina: 2. AII amacrine cells , 1991, The Journal of comparative neurology.

[101]  N. Vardi,et al.  Simulation of the Aii amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties , 1995, Visual Neuroscience.

[102]  E. Hartveit,et al.  Electrical synapses between AII amacrine cells: dynamic range and functional consequences of variation in junctional conductance. , 2008, Journal of neurophysiology.

[103]  Joshua H. Singer,et al.  Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors , 2006, Nature.

[104]  H. Wässle,et al.  Electron microscopic analysis of the rod pathway of the rat retina , 1993, The Journal of comparative neurology.

[105]  B. Bloch,et al.  Immunocytochemical localization of dopamine D1 receptors in the retina of mammals , 1997, Visual Neuroscience.

[106]  P Sterling,et al.  Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  J. Seamans,et al.  Dopamine Receptor Signaling , 2004, Journal of receptor and signal transduction research.

[108]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[109]  E. Hartveit,et al.  Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. , 1999, Journal of neurophysiology.

[110]  J. Nowak,et al.  Retinal dopamine D1 and D2 receptors: Characterization by binding or pharmacological studies and physiological functions , 1990, Cellular and Molecular Neurobiology.

[111]  S. Nakanishi,et al.  A Novel Connection between Rods and ON Cone Bipolar Cells Revealed by Ectopic Metabotropic Glutamate Receptor 7 (mGluR7) in mGluR6-Deficient Mouse Retinas , 2007, The Journal of Neuroscience.

[112]  W. Stiles COLOR VISION: THE APPROACH THROUGH INCREMENT-THRESHOLD SENSITIVITY. , 1959 .

[113]  Jonathan B Demb,et al.  Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell , 2008, The Journal of physiology.

[114]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[115]  E. Raviola,et al.  Gap junctions between photoreceptor cells in the vertebrate retina. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Fred Rieke,et al.  Network Variability Limits Stimulus-Evoked Spike Timing Precision in Retinal Ganglion Cells , 2006, Neuron.

[117]  Paul Witkovsky,et al.  Dopamine and retinal function , 2004, Documenta Ophthalmologica.

[118]  R. Dacheux,et al.  Excitatory dyad synapse in rabbit retina. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[119]  P. Detwiler,et al.  Different Mechanisms Generate Maintained Activity in ON and OFF Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[120]  F. Rieke,et al.  Retinal processing near absolute threshold: from behavior to mechanism. , 2005, Annual review of physiology.

[121]  S. Mills,et al.  Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina , 2004, Visual Neuroscience.

[122]  E. Cohen,et al.  Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. , 1998, Journal of neurophysiology.

[123]  P. Sterling,et al.  Architecture of rod and cone circuits to the on-beta ganglion cell , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  P. Svenningsson,et al.  Cellular localization and function of DARPP‐32 in the rodent retina , 2007, The European journal of neuroscience.

[125]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[126]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.

[127]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[128]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.