Regularizing Variational Autoencoders for Molecular Graph Generation
暂无分享,去创建一个
Xin Li | Zhi Tang | Hao Zhang | Xiaoqing Lyu | Keqi Hu | Zhi Tang | Keqi Hu | Hao Zhang | Xiaoqing Lyu | Xin Li
[1] Cao Xiao,et al. Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders , 2018, NeurIPS.
[2] Qi Liu,et al. Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.
[3] Steven Skiena,et al. Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.
[4] Nikos Komodakis,et al. GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.
[5] Alán Aspuru-Guzik,et al. Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.
[6] Samuel S. Schoenholz,et al. Neural Message Passing for Quantum Chemistry , 2017, ICML.
[7] Max Welling,et al. Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.
[8] Matt J. Kusner,et al. Grammar Variational Autoencoder , 2017, ICML.
[9] Alán Aspuru-Guzik,et al. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.
[10] Alán Aspuru-Guzik,et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.
[11] Pavlo O. Dral,et al. Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.
[12] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[13] Jean-Louis Reymond,et al. Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..
[14] Ryan G. Coleman,et al. ZINC: A Free Tool to Discover Chemistry for Biology , 2012, J. Chem. Inf. Model..
[15] Geoffrey E. Hinton,et al. Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.
[16] Peter Ertl,et al. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.
[17] Gordon M. Crippen,et al. Prediction of Physicochemical Parameters by Atomic Contributions , 1999, J. Chem. Inf. Comput. Sci..
[18] David Weininger,et al. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..
[19] Gordon M. Crippen,et al. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions , 1987, J. Chem. Inf. Comput. Sci..