Regularizing Variational Autoencoders for Molecular Graph Generation

[1]  Cao Xiao,et al.  Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders , 2018, NeurIPS.

[2]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[3]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.

[4]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[5]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[6]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[7]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[8]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[9]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[10]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[11]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[12]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[13]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[14]  Ryan G. Coleman,et al.  ZINC: A Free Tool to Discover Chemistry for Biology , 2012, J. Chem. Inf. Model..

[15]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[16]  Peter Ertl,et al.  Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.

[17]  Gordon M. Crippen,et al.  Prediction of Physicochemical Parameters by Atomic Contributions , 1999, J. Chem. Inf. Comput. Sci..

[18]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[19]  Gordon M. Crippen,et al.  Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions , 1987, J. Chem. Inf. Comput. Sci..