On the complete integrability of completely integrable systems

The question of complete integrability of evolution equations associated ton×n first order isospectral operators is investigated using the inverse scattering method. It is shown that forn>2, e.g. for the three-wave interaction, additional (nonlinear) pointwise flows are necessary for the assertion of complete integrability. Their existence is demonstrated by constructing action-angle variables. This construction depends on the analysis of a natural 2-form and symplectic foliation for the groupsGL(n) andSU(n).

[1]  A. G. Greenhill Analytical Mechanics , 1890, Nature.

[2]  W. Burnside Theory of Functions of a Complex Variable , 1893, Nature.

[3]  R. A. Silverman,et al.  Theory of Functions of a Complex Variable , 1968 .

[4]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[5]  C. S. Gardner,et al.  The Korteweg-de Vries equation as a Hamiltonian System , 1971 .

[6]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[7]  Vladimir E. Zakharov,et al.  Resonant interaction of wave packets in nonlinear media , 1973 .

[8]  S. Manakov,et al.  On the complete integrability of a nonlinear Schrödinger equation , 1974 .

[9]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[10]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[11]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[12]  S. Ivanov,et al.  On equations for the coefficient functions of the S matrix in quantum field theory , 1974 .

[13]  Peter D. Lax,et al.  Almost Periodic Solutions of the KdV Equation , 1976 .

[14]  S. Manakov Example of a completely integrable nonlinear wave field with nontrivial dynamics (lee model) , 1976 .

[15]  D. J. Kaup,et al.  The Three-Wave Interaction-A Nondispersive Phenomenon , 1976 .

[16]  N. V. Nikolenko On the complete integrability of the nonlinear Schrödinger equation , 1976 .

[17]  A. Newell The general structure of integrable evolution equations , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  P. Caudrey The inverse problem for a general N × N spectral equation , 1982 .

[19]  R. Newton The Inverse Scattering Problem , 1982 .

[20]  V. Gerdjikov On the spectral theory of the integro-differential operator a generating nonlinear evolution equations , 1982 .

[21]  V. Dubrovsky,et al.  Hierarchy of Poisson brackets for elements of a scattering matrix , 1984 .

[22]  Ronald R. Coifman,et al.  Scattering and inverse scattering for first order systems , 1984 .

[23]  Ronald R. Coifman,et al.  Inverse scattering and evolution equations , 1985 .

[24]  D. Sattinger Hamiltonian Hierarchies on Semisimple Lie Algebras , 1985 .

[25]  Ronald R. Coifman,et al.  Linear spectral problems, non-linear equations and the ∂-method , 1989 .

[26]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .