Multi-Period Risk Measures and Optimal Investment Policies

This chapter provides an in-depth overview of an extended set of multi-period risk measures, their mathematical and economic properties, primarily from the perspective of dynamic risk control and portfolio optimization. The analysis is structured in four parts: the first part reviews characterizing properties of multi-period risk measures, it examines their financial foundations, and clarifies cross-relationships. The second part is devoted to three classes of multi-period risk measures, namely: terminal, additive and recursive. Their financial and mathematical properties are considered, leading to the proposal of a unifying representation. Key to the discussion is the treatment of dynamic risk measures taking their relationship with evolving information flows and time evolution into account: after convexity and coherence, time consistency emerges as a key property required by risk measures to effectively control risk exposure within dynamic programs. In the third part, we consider the application of multi-period measures to optimal investment policy selection, clarifying how portfolio selection models adapt to different risk measurement paradigms. In the fourth part we summarize and point out desirable developments and future research directions. Throughout the chapter, attention is paid to the state-of-the-art and methodological and modeling implications.

[1]  Suleyman Basak,et al.  Value-at-Risk Based Risk Management: Optimal Policies and Asset Prices , 1999 .

[2]  Berend Roorda,et al.  Time Consistency Conditions for Acceptability Measures, with an Application to Tail Value at Risk , 2007 .

[3]  Shouyang Wang,et al.  Risk control over bankruptcy in dynamic portfolio selection: a generalized mean-variance formulation , 2004, IEEE Transactions on Automatic Control.

[4]  Markus Leippold,et al.  Equilibrium Impact of Value-at-Risk Regulation , 2002 .

[5]  H. Föllmer,et al.  Convex risk measures and the dynamics of their penalty functions , 2006 .

[6]  Duan Li,et al.  Safety-first dynamic portfolio selection , 1998 .

[7]  David P. Morton,et al.  Evaluating policies in risk-averse multi-stage stochastic programming , 2014, Mathematical Programming.

[8]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..

[9]  Alexandre Street,et al.  Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences , 2014, Eur. J. Oper. Res..

[10]  M. Kupper,et al.  Representation results for law invariant time consistent functions , 2009 .

[11]  Larry G. Epstein,et al.  Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework , 1989 .

[12]  Jean-Philippe Chancelier,et al.  Dynamic consistency for stochastic optimal control problems , 2012, Ann. Oper. Res..

[13]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[14]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[15]  Csaba I. Fábián Handling CVaR objectives and constraints in two-stage stochastic models , 2008, Eur. J. Oper. Res..

[16]  Susanne Klöppel,et al.  DYNAMIC INDIFFERENCE VALUATION VIA CONVEX RISK MEASURES , 2007 .

[17]  Jorge Pinho de Sousa,et al.  A multiobjective metaheuristic for a mean-risk multistage capacity investment problem with process flexibility , 2012, Comput. Oper. Res..

[18]  Michael A. H. Dempster,et al.  Dynamic Stochastic Programming for Asset-Liability Management , 1998 .

[19]  M. Dempster,et al.  Stochastic optimization methods in finance and energy : new financial products and energy market strategies , 2011 .

[20]  Giorgio Consigli,et al.  Dynamic stochastic programmingfor asset-liability management , 1998, Ann. Oper. Res..

[21]  Hercules Vladimirou,et al.  A dynamic stochastic programming model for international portfolio management , 2008, Eur. J. Oper. Res..

[22]  Spiridon I. Penev,et al.  Multistage optimization of option portfolio using higher order coherent risk measures , 2013, Eur. J. Oper. Res..

[23]  Shuzhong Zhang,et al.  Robust portfolio selection based on a multi-stage scenario tree , 2008, Eur. J. Oper. Res..

[24]  Alexander Shapiro,et al.  Distributionally robust multistage inventory models with moment constraints , 2013 .

[25]  Jerzy A. Filar,et al.  Time Consistent Dynamic Risk Measures , 2006, Math. Methods Oper. Res..

[26]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[27]  Patrick Cheridito,et al.  Time-Inconsistency of VaR and Time-Consistent Alternatives , 2007 .

[28]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[29]  B. Roorda,et al.  COHERENT ACCEPTABILITY MEASURES IN MULTIPERIOD MODELS , 2005 .

[30]  Alexander Shapiro,et al.  A dynamic programming approach to adjustable robust optimization , 2011, Oper. Res. Lett..

[31]  Nalan Gülpinar,et al.  Worst-case robust decisions for multi-period mean-variance portfolio optimization , 2007, Eur. J. Oper. Res..

[32]  Hua He,et al.  Optimal Dynamic Trading Strategies with Risk Limits , 2001, Oper. Res..

[33]  Alexander Shapiro,et al.  Conditional Risk Mappings , 2005, Math. Oper. Res..

[34]  Georg Ch. Pflug,et al.  Time-inconsistent multistage stochastic programs: Martingale bounds , 2016, Eur. J. Oper. Res..

[35]  Süleyman Özekici,et al.  Portfolio selection in stochastic markets with exponential utility functions , 2009, Ann. Oper. Res..

[36]  Süleyman Özekici,et al.  Portfolio optimization in stochastic markets , 2006, Math. Methods Oper. Res..

[37]  Duan Li,et al.  Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation , 2000 .

[38]  Suleyman Basak,et al.  Dynamic Mean-Variance Asset Allocation , 2009 .

[39]  Jitka Dupacová,et al.  Structure of risk-averse multistage stochastic programs , 2015, OR Spectr..

[40]  Duan Li,et al.  BETTER THAN DYNAMIC MEAN‐VARIANCE: TIME INCONSISTENCY AND FREE CASH FLOW STREAM , 2012 .

[41]  The Effect of VaR Based Risk Management on Asset Prices and the Volatility Smile , 2001 .

[42]  Alexander Shapiro,et al.  Bounds for nested law invariant coherent risk measures , 2012, Oper. Res. Lett..

[43]  Gang Li,et al.  Composite time-consistent multi-period risk measure and its application in optimal portfolio selection , 2016 .

[44]  Berç Rustem,et al.  Multistage Stochastic Programming in Computational Finance , 2002 .

[45]  Duan Li,et al.  Optimal Multiperiod Mean-Variance Policy Under No-Shorting Constraint , 2012 .

[46]  Andrzej Ruszczynski,et al.  Scenario decomposition of risk-averse multistage stochastic programming problems , 2012, Ann. Oper. Res..

[47]  A. G. Malliaris,et al.  Chapter 1 Portfolio theory , 1995, Finance.

[48]  Alexander Shapiro,et al.  On a time consistency concept in risk averse multistage stochastic programming , 2009, Oper. Res. Lett..

[49]  Bernardo K. Pagnoncelli,et al.  Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective , 2016, Eur. J. Oper. Res..

[50]  A. Yoshimoto THE MEAN-VARIANCE APPROACH TO PORTFOLIO OPTIMIZATION SUBJECT TO TRANSACTION COSTS , 1996 .

[51]  Shu-zhi Wei,et al.  Multi-period optimization portfolio with bankruptcy control in stochastic market , 2007, Appl. Math. Comput..

[52]  Patrick Cheridito,et al.  COMPOSITION OF TIME-CONSISTENT DYNAMIC MONETARY RISK MEASURES IN DISCRETE TIME , 2011 .

[53]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .

[54]  Zhiping Chen,et al.  Optimal investment policy in the time consistent mean–variance formulation , 2013 .

[55]  Jia Liu,et al.  Time consistent policy of multi-period mean-varianceproblem in stochastic markets , 2015 .

[56]  Tan Wang,et al.  Conditional preferences and updating , 2003, J. Econ. Theory.

[57]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[58]  Hélyette Geman,et al.  Time-consistency in managing a commodity portfolio: a dynamic risk measure approach , 2005 .

[59]  Raimund M. Kovacevic Time consistency and information monotonicity of multiperiod acceptability functionals , 2009 .

[60]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[61]  M. Frittelli,et al.  RISK MEASURES AND CAPITAL REQUIREMENTS FOR PROCESSES , 2006 .

[62]  Andrzej Ruszczynski,et al.  Risk-averse dynamic programming for Markov decision processes , 2010, Math. Program..

[63]  Leonard Rogers,et al.  VALUATIONS AND DYNAMIC CONVEX RISK MEASURES , 2007, 0709.0232.

[64]  D. Duffie,et al.  Security markets : stochastic models , 1990 .

[65]  P. Kleindorfer,et al.  Multi-Period VaR-Constrained Portfolio Optimization with Applications to the Electric Power Sector , 2005 .

[66]  André F. Perold,et al.  Large-Scale Portfolio Optimization , 1984 .

[67]  Frank Riedel,et al.  Dynamic Coherent Risk Measures , 2003 .

[68]  Nicole Bäuerle,et al.  Dynamic mean-risk optimization in a binomial model , 2009, Math. Methods Oper. Res..

[69]  Alexander Shapiro,et al.  Minimax and risk averse multistage stochastic programming , 2012, Eur. J. Oper. Res..

[70]  Patrick Cheridito,et al.  Recursiveness of indifference prices and translation-invariant preferences , 2009 .

[71]  Christoph Czichowsky,et al.  Time-consistent mean-variance portfolio selection in discrete and continuous time , 2012, Finance and Stochastics.

[72]  Süleyman Özekici,et al.  Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach , 2007, Eur. J. Oper. Res..

[73]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[74]  J. Wang,et al.  Continuous time mean variance asset allocation: A time-consistent strategy , 2011, Eur. J. Oper. Res..

[75]  Andrzej Ruszczynski,et al.  Two-stage portfolio optimization with higher-order conditional measures of risk , 2012, Ann. Oper. Res..