Parametric Inference for Discretely Sampled Stochastic Differential Equations

A review is given of parametric estimation methods for discretely sampled multivariate diffusion processes. The main focus is on estimating functions and asymptotic results. Maximum likelihood estimation is briefly considered, but the emphasis is on computationally less demanding martingale estimating functions. Particular attention is given to explicit estimating functions. Results on both fixed frequency and high frequency asymptotics are given. When choosing among the many estimators available, guidance is provided by simple criteria for high frequency efficiency and rate optimality that are presented in the framework of approximate martingale estimating functions.

[1]  Timo Terasvirta,et al.  Multivariate GARCH Models , 2008 .

[2]  Martin Jacobsen Optimality and small ͉-optimality of martingale estimating functions , 2002 .

[3]  Michael Sorensen,et al.  Efficient Estimation for Ergodic Diffusions Sampled at High Frequency , 2007 .

[4]  Bent Nielsen,et al.  An Analysis of the Indicator Saturation Estimator as a Robust Regression Estimator , 2008 .

[5]  Richard Bellman,et al.  Stochastic Processes in Mathematical Physics and Engineering , 1964 .

[6]  Jie Zhu Pricing Volatility of Stock Returns With Volatile and Persistent Components , 2007 .

[7]  Tom Engsted,et al.  An Iterated GMM Procedure for Estimating the Campbell-Cochrane Habit Formation Model, with an Application to Danish Stock and Bond Returns , 2008 .

[8]  C. LareÂdo,et al.  Stochastic volatility models as hidden Markov models and statistical applications , 2000 .

[9]  Michael Sørensen,et al.  Estimation for stochastic differential equations with a small diffusion coefficient , 2009 .

[10]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[11]  Jean Jacod,et al.  On the estimation of the diffusion coefficient for multi-dimensional diffusion processes , 1993 .

[12]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[13]  C. Sims,et al.  Estimation of continuous-time models in finance , 1994 .

[14]  Martin Jacobsen Discretely Observed Diffusions: Classes of Estimating Functions and Small Δ‐optimality , 2001 .

[15]  Nakahiro Yoshida,et al.  Malliavin calculus, geometric mixing, and expansion of diffusion functionals , 2000 .

[16]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[17]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[18]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[19]  Yacine Ait-Sahalia,et al.  The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions , 2002 .

[20]  Yacine Ait-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002, 0804.0758.

[21]  Richard A. Davis,et al.  Handbook of Financial Time Series , 2009 .

[22]  Bas J. M. Werker,et al.  A Jump‐diffusion Model for Exchange Rates in a Target Zone , 2001 .

[23]  Timo Terasvirta,et al.  Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure , 2008 .

[24]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[25]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[26]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[27]  Timo Terasvirta,et al.  Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model , 2008 .

[28]  V. P. Godambe,et al.  Selected proceedings of the symposium on estimating functions , 1999 .

[29]  Campbell R. Harvey,et al.  An Empirical Comparison of Alternative Models of the Short-Term Interest Rate , 1992 .

[30]  Yacine Aït-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2008 .

[31]  E. Gobet LAN property for ergodic diffusions with discrete observations , 2002 .

[32]  Michael Sørensen,et al.  Estimating Functions for Discretely Observed Diffusions: A Review , 1997 .

[33]  Mathieu Kessler,et al.  Computational Aspects Related to Martingale Estimating Functions for a Discretely Observed Diffusion , 2002 .

[34]  M. Sørensen,et al.  The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes , 2007 .

[35]  Parameterizing Unconditional Skewness in Models for Financial Time Series , 2008 .

[36]  P. Mykland,et al.  Estimators of diffusions with randomly spaced discrete observations: A general theory , 2004, math/0503679.

[37]  Valentine Genon-Catalot,et al.  Maximnm contrast estimation for diffusion processes from discrete observations , 1990 .

[38]  C. Heyde,et al.  Quasi-likelihood and its application , 1997 .

[39]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .

[40]  Almut E. D. Veraart INFERENCE FOR THE JUMP PART OF QUADRATIC VARIATION OF ITÔ SEMIMARTINGALES , 2008, Econometric Theory.

[41]  Mathieu Kessler,et al.  Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process , 2000 .

[42]  Bo Martin Bibby,et al.  On Estimation for Discretely Observed Diffusions: A Review , 1996 .

[43]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[44]  Peter Christoffersen,et al.  Volatility Components, Affine Restrictions and Non-Normal Innovations , 2008 .

[45]  V. P. Godambe An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .

[46]  Masayuki Uchida,et al.  Small-diffusion asymptotics for discretely sampled stochastic differential equations , 2003 .

[47]  A. Skorokhod Asymptotic Methods in the Theory of Stochastic Differential Equations , 2008 .

[48]  P. Doukhan Mixing: Properties and Examples , 1994 .

[49]  A. Pedersen A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations , 1995 .

[50]  A. Veretennikov,et al.  Bounds for the Mixing Rate in the Theory of Stochastic Equations , 1988 .

[51]  C. C. Heyde,et al.  Quasi-likelihood and Optimal Estimation , 2010 .

[52]  C. C. Heyde,et al.  Quasi-Likelihood and Optimal Estimation, Correspondent Paper , 1987 .

[53]  Michael Sorensen,et al.  DIFFUSION MODELS FOR EXCHANGE RATES IN A TARGET ZONE , 2007 .

[54]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[55]  P. Billingsley,et al.  The Lindeberg-Lévy theorem for martingales , 1961 .

[56]  Jie Zhu FIEGARCH-M and and International Crises: A Cross-Country Analysis , 2008 .

[57]  N. Yoshida Estimation for diffusion processes from discrete observation , 1992 .

[58]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[59]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[60]  Tobias Rydén,et al.  Estimation in the Cox-Ingersoll-Ross Model , 1997, Econometric Theory.

[61]  D. Florens-zmirou Approximate discrete-time schemes for statistics of diffusion processes , 1989 .

[62]  H. Sørensen Discretely Observed Diffusions: Approximation of the Continuous‐time Score Function , 2001 .

[63]  Michael Sørensen,et al.  Estimation for discretely observed diffusions using transform functions , 2003, Journal of Applied Probability.

[64]  Yuichi Nagahara,et al.  Non-Gaussian distribution for stock returns and related stochastic differential equation , 1996 .

[65]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[66]  J. Durbin Estimation of Parameters in Time‐Series Regression Models , 1960 .

[67]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[68]  Michael Sørensen,et al.  Estimating equations based on eigenfunctions for a discretely observed diffusion process , 1999 .

[69]  Estimation parametrique des coefficients d'une diffusion ergodique a partir d'observations discretes , 1996 .

[70]  Jie Zhu Testing for Expected Return and Market Price of Risk in Chinese A-B Share Markets : A Geometric Brownian Motion and Multivariate GARCH Model Approach , 2006 .

[71]  P. Phillips,et al.  Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance , 2007 .

[72]  Peter F. Christoffersen,et al.  Option Valuation with Long-Run and Short-Run Volatility Components , 2008 .

[73]  E. K. Wong The Construction of a Class of Stationary Markoff Processes , 1964 .