Uncertainty Issues in Automating Process Connecting Web and User

We are interested in replacing human processing of web resources by automated processing. Based on an experimental system we identify uncertainty issues which make this process difficult for automated processing. We show these uncertainty issues are connected with Web content mining and user preference mining. We conclude with a discussion of possible future development heading to an extension of web modeling standards with uncertainty features.

[1]  Jaroslav Pokorný,et al.  A system recommending top-k objects for multiple users preferences , 2007, 2007 IEEE International Fuzzy Systems Conference.

[2]  A. J. Feelders,et al.  Classification trees for problems with monotonicity constraints , 2002, SKDD.

[3]  V. S. Subrahmanian,et al.  Theory of Generalized Annotated Logic Programming and its Applications , 1992, J. Log. Program..

[4]  Peter Vojtás,et al.  Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying , 2007, SUM.

[5]  Charu C. Aggarwal,et al.  Collaborative crawling: mining user experiences for topical resource discovery , 2002, KDD.

[6]  Simon Parsons,et al.  Addendum to "Current Approaches to Handling Imperfect Information in Data and Knowledge Bases" , 1996, IEEE Trans. Knowl. Data Eng..

[7]  Chia-Hui Chang,et al.  IEPAD: information extraction based on pattern discovery , 2001, WWW '01.

[8]  David W. Embley,et al.  Ontology-based extraction and structuring of information from data-rich unstructured documents , 1998, CIKM '98.

[9]  W. Bruce Croft,et al.  Uncertainty in Information Retrieval Systems , 1996, Uncertainty Management in Information Systems.

[10]  Peter Vojtáš EL description logics with aggregation of user preference concepts , 2007 .

[11]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS.

[12]  Jakub Yaghob,et al.  Data Integration Using DataPile Structure , 2005, ADBIS Research Communications.

[13]  Georg Gottlob,et al.  Visual Web Information Extraction with Lixto , 2001, VLDB.

[14]  Peter Vojtáš,et al.  PHASES: A User Profile Learning Approach for Web Search , 2007 .

[15]  Jakub Yaghob,et al.  Semantic Web Infrastructure Using DataPile , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops.

[16]  Olegas Vasilecas,et al.  Advances in Databases and Information Systems (ADBIS) , 2002, SIGMOD Rec..

[17]  Ian Horrocks,et al.  The Fuzzy Description Logic f-SHIN , 2005, ISWC-URSW.

[18]  Leo Galambos,et al.  Dynamization in IR Systems , 2004, Intelligent Information Systems.

[19]  Robert L. Grossman,et al.  Mining data records in Web pages , 2003, KDD '03.

[20]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[21]  Craig A. Knoblock,et al.  A hierarchical approach to wrapper induction , 1999, AGENTS '99.

[22]  Nicholas Kushmerick,et al.  Wrapper induction: Efficiency and expressiveness , 2000, Artif. Intell..

[23]  Peter Vojtás,et al.  Ordinal Classification with Monotonicity Constraints , 2006, Industrial Conference on Data Mining.

[24]  Peter Vojtás,et al.  UPRE: User Preference Based Search System , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).

[25]  Takashi Ishikawa,et al.  Behavior Patterns of Information Discovery in Social Bookmarking Service , 2007, Web Intelligence.

[26]  Leo Galambos Semi-automatic stemmer evaluation , 2004, Intelligent Information Systems.