Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension

We propose to study unweighted graphs of constant distance VC-dimension as a broad generalization of many graph classes for which we can compute the diameter in truly subquadratic-time. In particular for any fixed $H$, the class of $H$-minor free graphs has distance VC-dimension at most $|V(H)|-1$. Our first main result is that on graphs of distance VC-dimension at most $d$, for any fixed $k$ we can either compute the diameter or conclude that it is larger than $k$ in time $\tilde{\cal O}(k\cdot mn^{1-\varepsilon_d})$, where $\varepsilon_d \in (0;1)$ only depends on $d$. Then as a byproduct of our approach, we get the first truly subquadratic-time algorithm for constant diameter computation on all the nowhere dense graph classes. Finally, we show how to remove the dependency on $k$ for any graph class that excludes a fixed graph $H$ as a minor. More generally, our techniques apply to any graph with constant distance VC-dimension and polynomial expansion. As a result for all such graphs one obtains a truly subquadratic-time algorithm for computing their diameter. Our approach is based on the work of Chazelle and Welzl who proved the existence of spanning paths with strongly sublinear stabbing number for every hypergraph of constant VC-dimension. We show how to compute such paths efficiently by combining the best known approximation algorithms for the stabbing number problem with a clever use of $\varepsilon$-nets, region decomposition and other partition techniques.

[1]  Sariel Har-Peled,et al.  Approximating Spanning Trees with Low Crossing Number , 2009, ArXiv.

[2]  Michel Habib,et al.  Into the Square: On the Complexity of Some Quadratic-time Solvable Problems , 2016, ICTCS.

[3]  Søren Dahlgaard,et al.  On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter , 2016, ICALP.

[4]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[5]  Aline Parreau,et al.  Identifying Codes in Hereditary Classes of Graphs and VC-Dimension , 2014, SIAM J. Discret. Math..

[6]  Frank Harary,et al.  Graph Theory , 2016 .

[7]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[8]  Guillaume Ducoffe,et al.  A New Application of Orthogonal Range Searching for Computing Giant Graph Diameters , 2018, SOSA.

[9]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[10]  David Eisenstat,et al.  The VC dimension of k-fold union , 2007, Inf. Process. Lett..

[11]  Kent Quanrud,et al.  Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs , 2015, ESA.

[12]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[13]  Michel Habib,et al.  Into the Square - On the Complexity of Quadratic-Time Solvable Problems , 2014, ArXiv.

[14]  Thore Husfeldt,et al.  Multivariate Analysis of Orthogonal Range Searching and Graph Distances , 2019, Algorithmica.

[15]  Peter Damaschke,et al.  Computing Giant Graph Diameters , 2016, IWOCA.

[16]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[17]  Timothy M. Chan Optimal Partition Trees , 2010, SCG.

[18]  David Coudert,et al.  Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width Graphs , 2017, SODA.

[19]  Sergio Cabello,et al.  Subquadratic Algorithms for the Diameter and the Sum of Pairwise Distances in Planar Graphs , 2017, SODA.

[20]  Jon M. Kleinberg,et al.  Detecting a Network Failure , 2004, Internet Math..

[21]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[22]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[23]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[24]  Jacob Evald,et al.  Tight Hardness Results for Distance and Centrality Problems in Constant Degree Graphs , 2016, ArXiv.

[25]  Liam Roditty,et al.  Towards tight approximation bounds for graph diameter and eccentricities , 2018, STOC.

[26]  Arthur M. Farley,et al.  Computation of the center and diameter of outerplanar graphs , 1980, Discret. Appl. Math..

[27]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[28]  Stephan Olariu,et al.  A simple linear-time algorithm for computing the center of an interval graph , 1990, Int. J. Comput. Math..

[29]  Merav Parter,et al.  Planar diameter via metric compression , 2019, STOC.

[30]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[31]  Michael R. Fellows,et al.  Parameterized learning complexity , 1993, COLT '93.

[32]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[33]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[34]  Liam Roditty,et al.  Fast approximation algorithms for the diameter and radius of sparse graphs , 2013, STOC '13.

[35]  Zdenek Dvorak,et al.  Treewidth of graphs with balanced separations , 2014, J. Comb. Theory, Ser. B.

[36]  Roberto Grossi,et al.  New Bounds for Approximating Extremal Distances in Undirected Graphs , 2016, SODA.

[37]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[38]  Christian Wulff-Nilsen,et al.  Separator Theorems for Minor-Free and Shallow Minor-Free Graphs with Applications , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[39]  Nicolas Bousquet,et al.  VC-dimension and Erdős-Pósa property , 2014, Discret. Math..

[40]  Emo Welzl,et al.  On Spanning Trees with Low Crossing Numbers , 1992, Data Structures and Efficient Algorithms.

[41]  Bernard Chazelle,et al.  Quasi-optimal range searching in spaces of finite VC-dimension , 1989, Discret. Comput. Geom..

[42]  Feodor F. Dragan,et al.  Dually Chordal Graphs , 1993, SIAM J. Discret. Math..

[43]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[44]  Zdenek Dvorak On classes of graphs with strongly sublinear separators , 2018, Eur. J. Comb..

[45]  Mohit Singh,et al.  On the Crossing Spanning Tree Problem , 2004, APPROX-RANDOM.

[46]  Jirí Matousek,et al.  Spanning trees with low crossing number , 1991, RAIRO Theor. Informatics Appl..

[47]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[48]  Haim Kaplan,et al.  Voronoi Diagrams on Planar Graphs, and Computing the Diameter in Deterministic Õ(n5/3) Time , 2017, SODA.

[49]  Joshua R. Wang,et al.  Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs , 2016, SODA.

[50]  Feodor F. Dragan,et al.  Diameter determination on restricted graph families , 1998, Discret. Appl. Math..

[51]  Victor Chepoi,et al.  Covering Planar Graphs with a Fixed Number of Balls , 2007, Discret. Comput. Geom..

[52]  Elsev Iek The algorithmic use of hypertree structure and maximum neighbourhood orderings , 2003 .

[53]  Jirí Matousek,et al.  Bounded VC-Dimension Implies a Fractional Helly Theorem , 2004, Discret. Comput. Geom..

[54]  Laurent Viennot,et al.  Fast Diameter Computation within Split Graphs , 2019, COCOA.

[55]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[56]  Bruce A. Reed,et al.  A Separator Theorem in Minor-Closed Classes , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[57]  Robert E. Tarjan,et al.  Better Approximation Algorithms for the Graph Diameter , 2014, SODA.

[58]  Yin Tat Lee,et al.  Solving linear programs in the current matrix multiplication time , 2018, STOC.

[59]  Zdenek Dvorak,et al.  Strongly Sublinear Separators and Polynomial Expansion , 2015, SIAM J. Discret. Math..

[60]  Gerhard J. Woeginger,et al.  The VC-dimension of Set Systems Defined by Graphs , 1997, Discret. Appl. Math..

[61]  Colin Cooper,et al.  The vapnik-chervonenkis dimension of a random graph , 1995, Discret. Math..