Tracking Control for Mobile Robots Considering the Dynamics of All Their Subsystems: Experimental Implementation

The trajectory tracking task in a wheeled mobile robot (WMR) is solved by proposing a three-level hierarchical controller that considers the mathematical model of the mechanical structure (differential drive WMR), actuators (DC motors), and power stage (DC/DC Buck power converters). The highest hierarchical level is a kinematic control for the mechanical structure; the medium level includes two controllers based on differential flatness for the actuators; and the lowest hierarchical level consists of two average controllers also based on differential flatness for the power stage. In order to experimentally validate the feasibility of the proposed control scheme, the hierarchical controller is implemented via a – -modulator in a differential drive WMR prototype that we have built. Such an implementation is achieved by using MATLAB-Simulink and the real-time interface ControlDesk together with a DS1104 board. The experimental results show the effectiveness and robustness of the proposed control scheme.

[1]  Jang-Myung Lee,et al.  Sliding mode control for trajectory tracking of mobile robot in the RFID sensor space , 2009 .

[2]  Eugênio B. Castelan,et al.  Neural Dynamic Control of a Nonholonomic Mobile Robot Incorporating the Actuator Dynamics , 2008, 2008 International Conference on Computational Intelligence for Modelling Control & Automation.

[3]  Ling Liu,et al.  Trajectory tracking control of nonholonomic mobile robots by Backstepping , 2011, Proceedings of 2011 International Conference on Modelling, Identification and Control.

[4]  Sašo Blaič A novel trajectory-tracking control law for wheeled mobile robots , 2011 .

[5]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[6]  Rong-Jong Wai,et al.  Design of Dynamic Petri Recurrent Fuzzy Neural Network and Its Application to Path-Tracking Control of Nonholonomic Mobile Robot , 2009, IEEE Transactions on Industrial Electronics.

[7]  P. K. Jain,et al.  A New Control Approach Based on the Differential Flatness Theory for an AC/DC Converter Used in Electric Vehicles , 2012, IEEE Transactions on Power Electronics.

[8]  Krzysztof J. Kaliński,et al.  Optimal control of 2-wheeled mobile robot at energy performance index , 2016 .

[9]  Saso Blazic,et al.  A novel trajectory-tracking control law for wheeled mobile robots , 2011, Robotics Auton. Syst..

[10]  Ramon Silva Ortigoza,et al.  Trajectory Tracking Control for a Differential Drive Wheeled Mobile Robot Considering the Dynamics Related to the Actuators and Power Stage , 2016 .

[11]  Mignon Park,et al.  Generalized Extended State Observer Approach to Robust Tracking Control for Wheeled Mobile Robot with Skidding and Slipping , 2013 .

[12]  Flore Remouit,et al.  Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources , 2015 .

[13]  A. Boudghene Stambouli,et al.  Fuel cells, an alternative to standard sources of energy , 2002 .

[14]  Dongbing Gu,et al.  Receding horizon tracking control of wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[15]  Amit Ailon,et al.  Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory tracking and related application , 2011, Robotics Auton. Syst..

[16]  Zhaoxia Peng,et al.  Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network , 2016 .

[17]  Yichao Tang,et al.  Bidirectional Resonant DC–DC Step-Up Converters for Driving High-Voltage Actuators in Mobile Microrobots , 2016, IEEE Transactions on Power Electronics.

[18]  Robert J. Wood,et al.  Design and fabrication of ultralight high-voltage power circuits for flapping-wing robotic insects , 2011, 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[19]  Wanderley Cardoso Celeste,et al.  An adaptive dynamic controller for autonomous mobile robot trajectory tracking , 2008 .

[20]  Dongkyoung Chwa,et al.  Fuzzy Adaptive Tracking Control of Wheeled Mobile Robots With State-Dependent Kinematic and Dynamic Disturbances , 2012, IEEE Transactions on Fuzzy Systems.

[21]  Robert J. Wood,et al.  A review of actuation and power electronics options for flapping-wing robotic insects , 2008, 2008 IEEE International Conference on Robotics and Automation.

[22]  Saifur Rahman,et al.  Green power: What is it and where can we find it? , 2003 .

[23]  Alan F. Lynch,et al.  Experimental Validation of Nonlinear Control for a Voltage Source Converter , 2009, IEEE Transactions on Control Systems Technology.

[24]  Yiding Wang,et al.  A Review of Fabrication Options and Power Electronics for Flapping-Wing Robotic Insects , 2013 .

[25]  Zhong-Ping Jiang,et al.  A recursive technique for tracking control of nonholonomic systems in chained form , 1999, IEEE Trans. Autom. Control..

[26]  Yang Shi,et al.  Design and Implementation of Nonuniform Sampling Cooperative Control on A Group of Two-Wheeled Mobile Robots , 2017, IEEE Transactions on Industrial Electronics.

[27]  Jianhua Wang,et al.  An adaptive trajectory tracking control of wheeled mobile robots , 2011, 2011 6th IEEE Conference on Industrial Electronics and Applications.

[28]  Jung-Min Yang,et al.  Sliding Mode Motion Control of Nonholonomic Mobile Robots , 1999 .

[29]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[30]  Junku Yuh,et al.  The Status of Robotics , 2007, IEEE Robotics & Automation Magazine.

[31]  Bimal K. Bose Energy, environment, and advances in power electronics , 2000 .

[32]  Chi-Yi Tsai,et al.  Robust visual tracking control system of a mobile robot based on a dual-Jacobian visual interaction model , 2009, Robotics Auton. Syst..

[33]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[34]  Hind Taud,et al.  Modeling and Experimental Validation of a Bidirectional DC/DC Buck Power Electronic Converter‑DC Motor System , 2017, IEEE Latin America Transactions.

[35]  S. R. Bull,et al.  Renewable energy today and tomorrow , 2001, Proc. IEEE.

[36]  Georges Bastin,et al.  Modelling and control of non-holonomic wheeled mobile robots , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[37]  S. Shankar Sastry,et al.  Stabilization of trajectories for systems with nonholonomic constraints , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[38]  Tzyh Jong Tarn,et al.  Effect of motor dynamics on nonlinear feedback robot arm control , 1991, IEEE Trans. Robotics Autom..

[39]  Warren E. Dixon,et al.  Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[40]  R. Silva-Ortigoza,et al.  Trajectory Tracking in a Mobile Robot without Using Velocity Measurements for Control of Wheels , 2008, IEEE Latin America Transactions.

[41]  Wu,et al.  Adaptive Trajectory Tracking Control for a Nonholonomic Mobile Robot , 2011 .

[42]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[43]  Tianmiao Wang,et al.  Robust Stabilization of a Wheeled Mobile Robot Using Model Predictive Control Based on Neurodynamics Optimization , 2017, IEEE Transactions on Industrial Electronics.

[44]  Alireza Mohammad Shahri,et al.  Design and Implementation of an Inverse Dynamics Controller for Uncertain Nonholonomic Robotic Systems , 2013, J. Intell. Robotic Syst..

[45]  Zhong-Ping Jiang,et al.  Adaptive output feedback tracking control of a nonholonomic mobile robot , 2014, Autom..

[46]  Alireza Mohammad Shahri,et al.  Output feedback tracking control of uncertain non-holonomic wheeled mobile robots: a dynamic surface control approach , 2012 .

[47]  Hee-Jun Kang,et al.  Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force , 2016, Neurocomputing.

[48]  Masahiro Oya,et al.  Adaptive motion tracking control of uncertain nonholonomic mechanical systems including actuator dynamics , 2005 .

[49]  J.C. Adamowski,et al.  Drive system control and energy management of a solar powered electric vehicle , 1998, APEC '98 Thirteenth Annual Applied Power Electronics Conference and Exposition.

[50]  Garrett M. Clayton,et al.  Trajectory Tracking Control of Planar Underactuated Vehicles , 2017, IEEE Transactions on Automatic Control.

[51]  Mohammad Reza Feyzi,et al.  Brushless DC motor drives supplied by PV power system based on Z-source inverter and FL-IC MPPT controller , 2011 .

[52]  Ramon Silva-Ortigoza,et al.  DC/DC Buck Power Converter as a Smooth Starter for a DC Motor Based on a Hierarchical Control , 2015, IEEE Transactions on Power Electronics.

[53]  R. S. Ortigoza,et al.  Assessment of an Average Tracking Controller that Considers all the Subsystems Involved in a WMR: Implementation via PWM or Sigma-Delta Modulation , 2016, IEEE Latin America Transactions.

[54]  Negin Lashkari,et al.  Development of a New Robust Controller With Velocity Estimator for Docked Mobile Robots: Theory and Experiments , 2017, IEEE/ASME Transactions on Mechatronics.

[55]  Hyunjun Cho,et al.  First-person view semi-autonomous teleoperation of cooperative wheeled mobile robots with visuo-haptic feedback , 2017, Int. J. Robotics Res..

[56]  Marija Seder,et al.  Receding Horizon Control for Convergent Navigation of a Differential Drive Mobile Robot , 2017, IEEE Transactions on Control Systems Technology.

[57]  F. Blaabjerg,et al.  Power electronics as efficient interface in dispersed power generation systems , 2004, IEEE Transactions on Power Electronics.

[58]  Warren E. Dixon,et al.  Tracking and Regulation Control of a Mobile Robot System With Kinematic Disturbances: A Variable Structure-Like Approach , 2000 .

[59]  Chun-Yi Su,et al.  Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot , 2016, IEEE Transactions on Control Systems Technology.

[60]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[61]  R. Agarwal,et al.  A linear-interpolation-based controller design for trajectory tracking of mobile robots , 2010 .

[62]  Mou Chen,et al.  Disturbance Attenuation Tracking Control for Wheeled Mobile Robots With Skidding and Slipping , 2017, IEEE Transactions on Industrial Electronics.

[63]  H. Taud,et al.  A Sensorless Passivity-Based Control for the DC/DC Buck Converter‑Inverter‑DC Motor System , 2016, IEEE Latin America Transactions.

[64]  Klaus-Dieter Kuhnert,et al.  Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties , 2005, IEEE Transactions on Robotics.

[65]  Javier Moreno-Valenzuela,et al.  A MRAC Principle for a Single-Link Electrically Driven Robot with Parameter Uncertainties , 2017, Complex..

[66]  M. Fliess,et al.  Regulation of non-minimum phase outputs: a flatness based approach , 1998 .

[67]  Frede Blaabjerg,et al.  Future on Power Electronics for Wind Turbine Systems , 2013, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[68]  Josep Samitier,et al.  High-voltage smart power integrated circuits to drive piezoceramic actuators for microrobotic applications , 2001 .

[69]  Nasser Ojaroudi,et al.  Improved time varying inertia weight PSO for solved economic load dispatch with subsidies and wind power effects , 2016, Complex..

[70]  Mayra Antonio-Cruz,et al.  Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System , 2014 .

[71]  António Paulo Moreira,et al.  A Multilayer Model Predictive Control Methodology Applied to a Biomass Supply Chain Operational Level , 2017, Complex..

[72]  James M. Conrad,et al.  Survey of popular robotics simulators, frameworks, and toolkits , 2011, 2011 Proceedings of IEEE Southeastcon.

[73]  Warren E. Dixon,et al.  Global exponential tracking control of a mobile robot system via a PE condition , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[74]  Dongkyoung Chwa,et al.  Tracking Control of Differential-Drive Wheeled Mobile Robots Using a Backstepping-Like Feedback Linearization , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[75]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[76]  Farzad Pourboghrat,et al.  Adaptive control of dynamic mobile robots with nonholonomic constraints , 2002, Comput. Electr. Eng..

[77]  Y. M. Zhang,et al.  Trajectory tracking of Wheeled Mobile Robots: A kinematical approach , 2012, Proceedings of 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications.

[78]  Konghui Guo,et al.  Distributed formation control of nonholonomic autonomous vehicle via RBF neural network , 2017 .

[79]  D. Dawson,et al.  Robust tracking and regulation control for mobile robots , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[80]  R. S. Ortigoza,et al.  Wheeled Mobile Robots: A review , 2012, IEEE Latin America Transactions.

[81]  Saso Blazic,et al.  On Periodic Control Laws for Mobile Robots , 2014, IEEE Transactions on Industrial Electronics.

[82]  Guoqiang Hu,et al.  Adaptive Vision-Based Leader–Follower Formation Control of Mobile Robots , 2017, IEEE Transactions on Industrial Electronics.

[83]  Phatiphat Thounthong,et al.  A New Control Law Based on the Differential Flatness Principle for Multiphase Interleaved DC–DC Converter , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[84]  Jin Bae Park,et al.  Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty , 2009, IEEE Transactions on Control Systems Technology.

[85]  Indra Narayan Kar,et al.  Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[86]  Jin Bae Park,et al.  Adaptive tracking control of nonholonomic mobile robots considering actuator dynamics: Dynamic surface design approach , 2009, 2009 American Control Conference.

[87]  Jacquelien M. A. Scherpen,et al.  Formation Control and Velocity Tracking for a Group of Nonholonomic Wheeled Robots , 2016, IEEE Transactions on Automatic Control.

[88]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[89]  Jinde Cao,et al.  Multi-level dispatch control architecture for power systems with demand-side resources , 2015 .

[90]  Warren E. Dixon,et al.  Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[91]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[92]  Ramón Silva-Ortigoza,et al.  Velocity and Current Inner Loops in a Wheeled Mobile Robot , 2010, Adv. Robotics.

[93]  Indra Narayan Kar,et al.  Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics , 2006, Neurocomputing.

[94]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[95]  Sunil K. Agrawal,et al.  Trajectory Planning of Differentially Flat Systems with Dynamics and Inequalities , 2000 .

[96]  Shaohua Luo,et al.  Wheeled Mobile Robot RBFNN Dynamic Surface Control Based on Disturbance Observer , 2014 .

[97]  Chung-Hsun Sun,et al.  Sequentially switched fuzzy-model-based control for wheeled mobile robot with visual odometry , 2017 .

[98]  H. Sira-Ramirez,et al.  On the sliding mode control of wheeled mobile robots , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[99]  Lihong Huang,et al.  NEURAL NETWORK ROBUST CONTROL FOR A NONHOLONOMIC MOBILE ROBOT INCLUDING ACTUATOR DYNAMICS , 2010 .

[100]  Farbod Fahimi,et al.  Autonomous Robots: Modeling, Path Planning, and Control , 2008 .

[101]  Nima Amjady,et al.  Net demand prediction for power systems by a new neural network-based forecasting engine , 2016, Complex..

[102]  Chen Chen,et al.  An Ultracompact Dual-Stage Converter for Driving Electrostatic Actuators in Mobile Microrobots , 2014, IEEE Transactions on Power Electronics.

[103]  Weiliang Xu,et al.  Trajectory tracking control of dynamic non‐holonomic systems with unknown dynamics , 1999 .

[104]  Rafael Castro-Linares,et al.  Leader-Follower Formation for Nonholonomic Mobile Robots: Discrete-Time Approach , 2016 .

[105]  Sung Jin Yoo,et al.  A low-complexity tracker design for uncertain nonholonomic wheeled mobile robots with time-varying input delay at nonlinear dynamic level , 2017 .

[106]  Kaushik Rajashekara,et al.  Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles , 2008, IEEE Transactions on Industrial Electronics.

[107]  John T. Wen,et al.  Trajectory tracking control of a car-trailer system , 1997, IEEE Trans. Control. Syst. Technol..

[108]  S. Sivakumar,et al.  An assessment on performance of DC–DC converters for renewable energy applications , 2016 .

[109]  F. Lee,et al.  On a Future for Power Electronics , 2013 .

[110]  K. Erenturk,et al.  Hybrid Control of a Mechatronic System: Fuzzy Logic and Grey System Modeling Approach , 2007, IEEE/ASME Transactions on Mechatronics.

[111]  Long Cheng,et al.  Adaptive Control of an Electrically Driven Nonholonomic Mobile Robot via Backstepping and Fuzzy Approach , 2009, IEEE Transactions on Control Systems Technology.

[112]  L. Sweet,et al.  Redefinition of the robot motion-control problem , 1985, IEEE Control Systems Magazine.

[113]  Josep M. Guerrero,et al.  Coordinated Active Power Dispatch for a Microgrid via Distributed Lambda Iteration , 2017, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[114]  Krzysztof Kozlowski,et al.  A backstepping approach to control a nonholonomic mobile robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[115]  Gregor Klan Tracking-error model-based predictive control for mobile robots in real time , 2007 .

[116]  Chih-Lyang Hwang Comparison of Path Tracking Control of a Car-Like Mobile Robot With and Without Motor Dynamics , 2016, IEEE/ASME Transactions on Mechatronics.

[117]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[118]  Michael Defoort,et al.  Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots , 2008, IEEE Transactions on Industrial Electronics.

[119]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[120]  Giuseppe Marco Tina,et al.  Design considerations about a photovoltaic power system to supply a mobile robot , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[121]  Peng Shi,et al.  Nonlinear Control for Tracking and Obstacle Avoidance of a Wheeled Mobile Robot With Nonholonomic Constraint , 2016, IEEE Transactions on Control Systems Technology.

[122]  Chih-Lyang Hwang,et al.  Global Fuzzy Adaptive Hierarchical Path Tracking Control of a Mobile Robot With Experimental Validation , 2016, IEEE Transactions on Fuzzy Systems.

[123]  Shuli Sun Designing approach on trajectory-tracking control of mobile robot , 2005 .

[124]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[125]  Tzuu-Hseng S. Li,et al.  Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots , 2009 .

[126]  Ali Azidehak,et al.  Design and implementation of minimal components brushless DC motor driver for mobile robots , 2011, 2011 IEEE International Conference on Mechatronics.

[127]  José Rafael García Sánchez,et al.  A New “DC/DC Buck-Boost Converter‑DC Motor” System: Modeling and Experimental Validation , 2017 .

[128]  Srdjan M. Lukic,et al.  Energy Storage Systems for Transport and Grid Applications , 2010, IEEE Transactions on Industrial Electronics.

[129]  R. Silva-Ortigoza,et al.  Construction of a WMR for Trajectory Tracking Control: Experimental Results , 2013, TheScientificWorldJournal.

[130]  Chih-Lyang Hwang,et al.  Trajectory tracking of a mobile robot with frictions and uncertainties using hierarchical sliding-mode under-actuated control , 2013 .

[131]  Adrian Filipescu,et al.  Sliding-mode control for trajectory-tracking of a Wheeled Mobile Robot in presence of uncertainties , 2009, 2009 7th Asian Control Conference.

[132]  Chun-Jung Chen,et al.  Motion control for a two-wheeled vehicle using a self-tuning PID controller , 2008 .

[133]  Jan T. Bialasiewicz,et al.  Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey , 2006, IEEE Transactions on Industrial Electronics.

[134]  Jun-Ho Oh,et al.  Tracking control of a two-wheeled mobile robot using inputoutput linearization , 1999 .

[135]  Malcolm Good,et al.  Dynamic Models for Control System Design of Integrated Robot and Drive Systems , 1985 .

[136]  Jin Bae Park,et al.  A Simple Adaptive Control Approach for Trajectory Tracking of Electrically Driven Nonholonomic Mobile Robots , 2010, IEEE Transactions on Control Systems Technology.

[137]  Yi-Hsing Chien,et al.  Hybrid Intelligent Algorithm for Indoor Path Planning and Trajectory-Tracking Control of Wheeled Mobile Robot , 2016, Int. J. Fuzzy Syst..

[138]  Anibal Sanjab,et al.  On the model order reduction of a direct current motor , 2015 .

[139]  Robert J. Wood,et al.  Sensors and Actuators A: Physical , 2009 .

[140]  Felipe Espinosa,et al.  Advanced and Intelligent Control Techniques Applied to the Drive Control and Path Tracking Systems on a Robotic Wheelchair , 2001, Auton. Robots.

[141]  Mohammad Javad Khosrowjerdi,et al.  Adaptive trajectory tracking control of wheeled mobile robots with disturbance observer , 2014 .

[142]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[143]  Hideki Hashimoto,et al.  Human-following mobile robot in a distributed intelligent sensor network , 2004, IEEE Transactions on Industrial Electronics.

[144]  R. S. Ortigoza,et al.  Trajectory Generation for Wheeled Mobile Robots Via Bézier Polynomials , 2016, IEEE Latin America Transactions.

[145]  Shigenori Sano,et al.  Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves , 2016 .

[146]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[147]  Roberto Kawakami Harrop Galvão,et al.  Adaptive control for mobile robot using wavelet networks , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[148]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.