Hot electron chemistry in catalytic reactions

[1]  Hyunhwa Lee,et al.  Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications. , 2022, Accounts of chemical research.

[2]  Jeong Y. Park,et al.  Hot Electron Phenomena at Solid-Liquid Interfaces. , 2022, The journal of physical chemistry letters.

[3]  G. Somorjai,et al.  Surface chemistry of hot electron and metal-oxide interfaces , 2021 .

[4]  F. Xiao,et al.  Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle , 2021, Nature Catalysis.

[5]  Jeong Y. Park,et al.  Plasmonic Hot Hole-Driven Water Splitting on Au Nanoprisms/P-Type GaN , 2021 .

[6]  Jeong Y. Park,et al.  Relaxation Dynamics of Enhanced Hot-Electron Flow on Perovskite-Coupled Plasmonic Silver Schottky Nanodiodes , 2021 .

[7]  Y. Jung,et al.  Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces , 2021, Nature communications.

[8]  C. Dong,et al.  Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis , 2020 .

[9]  Jeong Y. Park,et al.  In Situ Visualization of Localized Surface Plasmon Resonance‐Driven Hot Hole Flux , 2020, Advanced science.

[10]  G. Hutchings,et al.  Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts , 2020, Chemical reviews.

[11]  Tao Zhang,et al.  State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. , 2020, Chemical Society reviews.

[12]  Xiao Jiang,et al.  Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. , 2020, Chemical reviews.

[13]  G. Somorjai,et al.  Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions , 2020, MRS Bulletin.

[14]  K. D. de Jong,et al.  Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity , 2019, Nature Catalysis.

[15]  Yousung Jung,et al.  Intrinsic Relation between Hot Electron Flux and Catalytic Selectivity during Methanol Oxidation , 2019, ACS Catalysis.

[16]  N. Park,et al.  Elongated Lifetime and Enhanced Flux of Hot Electrons on Perovskite Plasmonic Nanodiode. , 2019, Nano letters.

[17]  Jeong Y. Park,et al.  Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO2 Schottky Nanodiodes. , 2019, ACS applied materials & interfaces.

[18]  Jeong Y. Park,et al.  Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO2. , 2019, Nano letters.

[19]  Jeong Y. Park,et al.  Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation. , 2018, Chemical communications.

[20]  S. Back,et al.  Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles , 2018, Nature Communications.

[21]  Jeong Y. Park,et al.  Isotope Effect of Hot Electrons Generated on Pt Nanoparticle Surfaces Under H2 and D2 Oxidation , 2018, Topics in Catalysis.

[22]  S. Moon,et al.  Hot Electrons at Solid-Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide. , 2016, Angewandte Chemie.

[23]  Jeong Y. Park,et al.  The nature of hot electrons generated by exothermic catalytic reactions , 2016 .

[24]  Jeong Y. Park,et al.  Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity. , 2015, Accounts of chemical research.

[25]  G. Somorjai,et al.  Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. , 2015, Chemical reviews.

[26]  G. Somorjai,et al.  Chemical-reaction-induced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size. , 2015, Angewandte Chemie.

[27]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[28]  Hui Zhang,et al.  Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications , 2014 .

[29]  G. Somorjai,et al.  Solid-state charge-based device for control of catalytic carbon monoxide oxidation on platinum nanofilms using external bias and light. , 2012, Nano letters.

[30]  G. Bernstein,et al.  Direct control of electron transfer to the surface-CO bond on a Pt/TiO2 catalytic diode. , 2011, Journal of the American Chemical Society.

[31]  Gabor A. Somorjai,et al.  Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. , 2009, Journal of the American Chemical Society.

[32]  G. Somorjai,et al.  Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes. , 2009, Nano letters.

[33]  E. Hasselbrink Non-adiabaticity in surface chemical reactions , 2009 .

[34]  G. Somorjai,et al.  Molecular factors of catalytic selectivity. , 2008, Angewandte Chemie.

[35]  G. Somorjai,et al.  Interfacial and Chemical Properties of Pt/TiO2, Pd/TiO2, and Pt/GaN Catalytic Nanodiodes Influencing Hot Electron Flow , 2007 .

[36]  J. M. Gidwani,et al.  The catalytic nanodiode: gas phase catalytic reaction generated electron flow using nanoscale platinum titanium oxide Schottky diodes. , 2005, Nano letters.

[37]  D. Auerbach,et al.  Conversion of large-amplitude vibration to electron excitation at a metal surface , 2005, Nature.

[38]  G. Ertl,et al.  Electronic excitation and dynamic promotion of a surface reaction. , 2003, Physical review letters.

[39]  D. Bird,et al.  Energy loss of atoms at metal surfaces due to electron-hole pair excitations: first-principles theory of "chemicurrents". , 2002, Physical review letters.

[40]  W. H. Weinberg,et al.  Chemically Induced Electronic Excitations at Metal Surfaces , 2001, Science.

[41]  W. H. Weinberg,et al.  Observation of excited electrons from nonadiabatic molecular reactions of NO and O2 on polycrystalline Ag , 2001 .

[42]  C. Rettner,et al.  Vibrational promotion of electron transfer. , 2000, Science.

[43]  W. H. Weinberg,et al.  Direct detection of electron–hole pairs generated by chemical reactions on metal surfaces , 2000 .

[44]  Bonn,et al.  Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) , 1999, Science.

[45]  Heinz,et al.  Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption. , 1995, Physical review. B, Condensed matter.

[46]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[47]  Lundqvist,et al.  Electron-transfer pathways in dynamic processes: Cl2 on K. , 1995, Physical review letters.

[48]  G. Ewing Energy flow from excited molecules on salt surfaces , 1992 .

[49]  Ertl,et al.  Nonadiabatic surface reaction: Mechanism of electron emission in the Cs+O2 system. , 1990, Physical review letters.

[50]  G. Somorjai,et al.  Energy redistribution among internal states of nitric oxide molecules upon scattering from Pt(111) crystal surface , 1983 .

[51]  J. Nørskov,et al.  Molecular orbital description of surface chemiluminescence , 1979 .

[52]  H. Nienhaus Electronic excitations by chemical reactions on metal surfaces , 2002 .

[53]  W. H. Weinberg,et al.  Electron-Hole Pair Creation at Ag and Cu Surfaces by Adsorption of Atomic Hydrogen and Deuterium , 1999 .

[54]  C. Rettner,et al.  The interaction of highly vibrationally excited molecules with surfaces: vibrational relaxation and reaction of NO(v) at Cu(111) and O/Cu(111) , 1999 .

[55]  Gadzuk Resonance-assisted hot electron femtochemistry at surfaces. , 1996, Physical review letters.

[56]  J. Nørskov,et al.  Photon and electron emission as indicators of intermediate states in surface reactions , 1979 .

[57]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .