GAUSSIAN RANDOM POLYGONS ARE GLOBALLY KNOTTED

A Gaussian random walk is a random walk in which each step is a vector whose coordinates are Gaussian random variables. In 3-space, if a Gaussian random walk of n steps begins and ends at the origin, then we can join successive points by straight line segments to get a knot. It is known that if n is large, then the knot is non-trivial with high probability. We give a new proof of this fact. Our proof shows in addition that with high probability the knot is contained as an essential loop in a fat, knotted, solid torus. Therefore the knot is a satellite knot and cannot be unknotted by any small perturbation.