Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

[1]  Maxim Dolgushev,et al.  Dynamics of semiflexible treelike polymeric networks. , 2009, The Journal of chemical physics.

[2]  F. Hansen,et al.  The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves , 2006, Molecular microbiology.

[3]  T. Maoka,et al.  Interdependence of Cell Growth and Gene Expression : Origins and Consequences , 2010 .

[4]  Chang-Yong Lee Mass fractal dimension of the ribosome and implication of its dynamic characteristics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Yong Chen,et al.  Dynamic Conformational Behavior and Molecular Interaction Discrimination of DNA/Binder Complexes by Single‐Chain Stretching in a MicroDevice , 2007, Chembiochem : a European journal of chemical biology.

[6]  J. Theriot,et al.  Subdiffusive motion of a polymer composed of subdiffusive monomers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  R. Vries DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins , 2010 .

[8]  S. Jun,et al.  Time scale of entropic segregation of flexible polymers in confinement: implications for chromosome segregation in filamentous bacteria. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  R. Kavenoff,et al.  Electron microscopy of membrane-free folded chromosomes from Escherichia coli , 1976, Chromosoma.

[10]  A. Estevez-Torres,et al.  DNA compaction: fundamentals and applications , 2011 .

[11]  V. Norris,et al.  Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane‐domain formation , 1995, Molecular microbiology.

[12]  Harish Vashisth,et al.  Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria , 2013 .

[13]  Terence Hwa,et al.  Bacterial growth laws and their applications. , 2011, Current opinion in biotechnology.

[14]  Gijs J. L. Wuite,et al.  Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation , 2006, Nature.

[15]  Marcel Geertz,et al.  General organisational principles of the transcriptional regulation system: a tree or a circle? , 2010, Molecular bioSystems.

[16]  F Jasch,et al.  Dynamics of randomly branched polymers: configuration averages and solvable models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Shlomi Reuveni,et al.  Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure , 2010, Proceedings of the National Academy of Sciences.

[18]  Mario Nicodemi,et al.  Thermodynamic pathways to genome spatial organization in the cell nucleus. , 2009, Biophysical journal.

[19]  Paul A. Wiggins,et al.  Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament , 2010, Proceedings of the National Academy of Sciences.

[20]  Davide Marenduzzo,et al.  Entropy-driven genome organization. , 2006, Biophysical journal.

[21]  J. Pogliano,et al.  Intracellular mobility of plasmid DNA is limited by the ParA family of partitioning systems , 2008, Molecular microbiology.

[22]  S. Busby,et al.  Transcription factor distribution in Escherichia coli: studies with FNR protein , 2006, Nucleic acids research.

[23]  Stéphane Robin,et al.  The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain , 2008, Cell.

[24]  Shane C. Dillon,et al.  Bacterial nucleoid-associated proteins, nucleoid structure and gene expression , 2010, Nature Reviews Microbiology.

[25]  J. Klafter,et al.  Probing microscopic origins of confined subdiffusion by first-passage observables , 2008, Proceedings of the National Academy of Sciences.

[26]  D. Heermann,et al.  Spatially confined folding of chromatin in the interphase nucleus , 2009, Proceedings of the National Academy of Sciences.

[27]  Irina A. Shkel,et al.  Crowding and Confinement Effects on Protein Diffusion In Vivo , 2006, Journal of bacteriology.

[28]  L. Mirny The fractal globule as a model of chromatin architecture in the cell , 2011, Chromosome Research.

[29]  Dieter W. Heermann,et al.  A model for Escherichia coli chromosome packaging supports transcription factor-induced DNA domain formation , 2011, Nucleic acids research.

[30]  O. Krichevsky,et al.  Internal structure and dynamics of isolated Escherichia coli nucleoids assessed by fluorescence correlation spectroscopy. , 2007, Biophysical journal.

[31]  J. Marko Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  W. Graessley Linear Viscoelasticity in Gaussian Networks , 1980 .

[33]  H. Orland,et al.  DYNAMICS OF THE SWELLING OR COLLAPSE OF A HOMOPOLYMER , 1996 .

[34]  H. Diamant,et al.  Binding of molecules to DNA and other semiflexible polymers. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Alessandra Carbone,et al.  Chromosomal periodicity and positional networks of genes in Escherichia coli , 2010 .

[36]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[37]  K. Wiese Dynamics of selfavoiding tethered membranes. I. Model A dynamics (Rouse model) , 1997, cond-mat/9702020.

[38]  J. Theriot,et al.  Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. , 2010, Physical review letters.

[39]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[40]  P. Forterre,et al.  Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. A. van Kan,et al.  Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel , 2009, Proceedings of the National Academy of Sciences.

[42]  P. Lenz,et al.  A Geometrical Model for DNA Organization in Bacteria , 2010, PloS one.

[43]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[44]  N. Kleckner,et al.  Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps , 2011, Proceedings of the National Academy of Sciences.

[45]  Christian Lesterlin,et al.  Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome , 2005, EMBO reports.

[46]  Donald Bliss,et al.  Spiral Architecture of the Nucleoid in Bdellovibrio bacteriovorus , 2010, Journal of bacteriology.

[47]  Jie Yan,et al.  Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility , 2011, Nucleic acids research.

[48]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[49]  Flemming G. Hansen,et al.  Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication , 2007, Journal of bacteriology.

[50]  C. Woldringh,et al.  Restricted diffusion of DNA segments within the isolated Escherichia coli nucleoid. , 2005, Journal of structural biology.

[51]  J. Meile,et al.  The terminal region of the E. coli chromosome localises at the periphery of the nucleoid , 2011, BMC Microbiology.

[52]  S. Allen,et al.  Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA , 2010, Molecular Microbiology.

[53]  Kazuya Morikawa,et al.  Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus , 2011, PloS one.

[54]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[55]  H. Ochman,et al.  The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. , 1994, EXS.

[56]  D. Sherratt,et al.  Independent Positioning and Action of Escherichia coli Replisomes in Live Cells , 2008, Cell.

[57]  Lucy Shapiro,et al.  Chromosome organization and segregation in bacteria. , 2006, Journal of structural biology.

[58]  J. E. Cabrera,et al.  Coupling the distribution of RNA polymerase to global gene regulation and the dynamic structure of the bacterial nucleoid in Escherichia coli. , 2006, Journal of structural biology.

[59]  Heather R. McManus,et al.  Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist , 2011, Proceedings of the National Academy of Sciences.

[60]  Kevin Struhl,et al.  Genomic analysis of protein–DNA interactions in bacteria: insights into transcription and chromosome organization , 2007, Molecular microbiology.

[61]  P. G. de Gennes,et al.  Dynamics of Entangled Polymer Solutions. I. The Rouse Model , 1976 .

[62]  S. Zimmerman Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase. , 2006, Journal of structural biology.

[63]  Cees Dekker,et al.  Dual architectural roles of HU: formation of flexible hinges and rigid filaments. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  A. Oppenheim,et al.  DNA–protein interactions and bacterial chromosome architecture , 2006, Physical biology.

[65]  R. de Vries,et al.  DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins. , 2010, Biochimie.

[66]  Jolyon Holdstock,et al.  Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Marcel Geertz,et al.  Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome , 2006, EMBO reports.

[68]  A. Ishihama,et al.  Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. , 2004, Nucleic acids research.

[69]  Cédric Vaillant,et al.  Transcription-Based Solenoidal Model of Chromosomes , 2004, Complexus.

[70]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[71]  S. Jun,et al.  Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome , 2006, Proceedings of the National Academy of Sciences.

[72]  C. Woldringh,et al.  Fused nucleoids resegregate faster than cell elongation in Escherichia coli pbpB(Ts) filaments after release from chloramphenicol inhibition. , 1998, Microbiology.

[73]  S. Edwards,et al.  The entropy of a confined polymer. I , 1969 .

[74]  Elasticity of gaussian and nearly gaussian phantom networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  A. Travers,et al.  Coordination of genomic structure and transcription by the main bacterial nucleoid‐associated protein HU , 2010, EMBO reports.

[76]  G. Muskhelishvili,et al.  A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. , 2009, Journal of molecular biology.

[77]  D. Sherratt,et al.  The two Escherichia coli chromosome arms locate to separate cell halves. , 2006, Genes & development.

[78]  Kantor,et al.  Conformations of randomly linked polymers. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[79]  Nicholas M. Luscombe,et al.  Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli , 2010, Nucleic acids research.

[80]  Uri Alon,et al.  Invariant Distribution of Promoter Activities in Escherichia coli , 2009, PLoS Comput. Biol..

[81]  Marc-Thorsten Hütt,et al.  Dissecting the logical types of network control in gene expression profiles , 2008, BMC Systems Biology.

[82]  S. Busby,et al.  Selective repression by Fis and H‐NS at the Escherichia coli dps promoter , 2008, Molecular microbiology.

[83]  Bruno H. Zimm,et al.  The Dimensions of Chain Molecules Containing Branches and Rings , 1949 .

[84]  J. Ubbink,et al.  Dimensions of a plectonemic DNA supercoil under fairly general perturbations , 1998 .

[85]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[86]  D. Sherratt,et al.  Replication-directed sister chromosome alignment in Escherichia coli , 2009, Molecular microbiology.

[87]  H. Janssen,et al.  Collapse transition of randomly branched polymers: renormalized field theory. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  Alexander Blumen,et al.  On the statistics of generalized Gaussian structures: collapse and random external fields , 1995 .

[89]  S. Zimmerman,et al.  Shape and compaction of Escherichia coli nucleoids. , 2006, Journal of structural biology.

[90]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[91]  Martijn S Luijsterburg,et al.  The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. , 2006, Journal of structural biology.

[92]  Carol J. Bult,et al.  Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence , 2006, The Journal of cell biology.

[93]  O. Espéli,et al.  Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications. , 2006, Journal of structural biology.

[94]  David J Sherratt,et al.  Bacterial Chromosome Dynamics , 2003, Science.

[95]  C. Woldringh,et al.  Structural and physical aspects of bacterial chromosome segregation. , 2006, Journal of structural biology.

[96]  S. Arold,et al.  Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check , 2010, The EMBO journal.

[97]  S. Busby,et al.  Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome , 2006, Nucleic acids research.

[98]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. Ubbink,et al.  Electrostatic-undulatory theory of plectonemically supercoiled DNA. , 1999, Biophysical journal.

[100]  Marc A. Martí-Renom,et al.  The Three-Dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation , 2012, RECOMB.

[101]  R. B. Jensen,et al.  A moving DNA replication factory in Caulobacter crescentus , 2001, The EMBO journal.

[102]  L. Shapiro,et al.  Bacterial chromosome organization and segregation. , 2010, Cold Spring Harbor perspectives in biology.

[103]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[104]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[105]  P. R. ten Wolde,et al.  Statistical analysis of the spatial distribution of operons in the transcriptional regulation network of Escherichia coli. , 2003, Journal of molecular biology.

[106]  E. Barkai,et al.  Fractional Langevin equation: overdamped, underdamped, and critical behaviors. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  Kurt Kremer,et al.  Statistics of polymer rings in the melt: a numerical simulation study , 2009, Physical biology.

[108]  A. D. de Koning,et al.  Effects of Fis on Escherichia coli gene expression during different growth stages. , 2007, Microbiology.

[109]  Marc A Marti-Renom,et al.  The Three-dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation , 2022 .

[110]  S. Zimmerman Studies on the compaction of isolated nucleoids from Escherichia coli. , 2004, Journal of structural biology.

[111]  B. Alberts,et al.  Molecular Biology of the Cell (4th Ed) , 2002 .

[112]  E. Kellenberger,et al.  The bacterial nucleoid revisited. , 1994, Microbiological reviews.

[113]  N. Cozzarelli,et al.  Linear ordering and dynamic segregation of the bacterial chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[114]  R. Metzler,et al.  Random time-scale invariant diffusion and transport coefficients. , 2008, Physical review letters.

[115]  T. Odijk,et al.  Osmotic compaction of supercoiled DNA into a bacterial nucleoid. , 1998, Biophysical chemistry.

[116]  Lucy Shapiro,et al.  The bacterial nucleoid: A highly organized and dynamic structure , 2005, Journal of cellular biochemistry.

[117]  E. Rocha The organization of the bacterial genome. , 2008, Annual review of genetics.

[118]  S. McLeod,et al.  Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis. , 2006, Journal of molecular biology.

[119]  S. Ben-Yehuda,et al.  Spatial organization of a replicating bacterial chromosome , 2008, Proceedings of the National Academy of Sciences.

[120]  D. Leitner,et al.  Mass fractal dimension and the compactness of proteins. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  Nigel P. Dyer,et al.  Dynamic Distribution of SeqA Protein across the Chromosome of Escherichia coli K-12 , 2010, mBio.

[122]  Saeed Tavazoie,et al.  Protein occupancy landscape of a bacterial genome. , 2009, Molecular cell.

[123]  C. Woldringh,et al.  Isolation of the Escherichia coli nucleoid. , 2001, Biochimie.

[124]  Ivan Junier,et al.  Spatial and Topological Organization of DNA Chains Induced by Gene Co-localization , 2010, PLoS Comput. Biol..

[125]  Barbara M. Bakker,et al.  DNA Supercoiling by Gyrase is Linked to Nucleoid Compaction , 2004, Molecular Biology Reports.

[126]  Shirley S Daube,et al.  Compartmentalization by directional gene expression , 2010, Proceedings of the National Academy of Sciences.

[127]  Andrew Wright,et al.  Entropy as the driver of chromosome segregation , 2010, Nature Reviews Microbiology.

[128]  Shlomo Havlin,et al.  Crumpled globule model of the three-dimensional structure of DNA , 1993 .

[129]  Roee Amit,et al.  Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. , 2003, Biophysical journal.

[130]  C Micheletti,et al.  Biopolymer organization upon confinement , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[131]  Naotake Ogasawara,et al.  Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[132]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[133]  Mario Nicodemi,et al.  Complexity of chromatin folding is captured by the strings and binders switch model , 2012, Proceedings of the National Academy of Sciences.

[134]  David C. Grainger,et al.  Chromosomal Macrodomains and Associated Proteins: Implications for DNA Organization and Replication in Gram Negative Bacteria , 2011, PLoS genetics.

[135]  I. Konieczny,et al.  Bacterial partitioning proteins affect the subcellular location of broad-host-range plasmid RK2. , 2008, Microbiology.

[136]  Simona Cocco,et al.  The micromechanics of DNA , 2003 .

[137]  J. E. Cabrera,et al.  Active Transcription of rRNA Operons Condenses the Nucleoid in Escherichia coli: Examining the Effect of Transcription on Nucleoid Structure in the Absence of Transertion , 2009, Journal of bacteriology.

[138]  A. Ishihama,et al.  Dynamic state of DNA topology is essential for genome condensation in bacteria , 2006, The EMBO journal.

[139]  Bruno Bassetti,et al.  Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. , 2010, Molecular bioSystems.

[140]  G. Ball,et al.  Replication and segregation of an Escherichia coli chromosome with two replication origins , 2011, Proceedings of the National Academy of Sciences.

[141]  C. Woldringh,et al.  Chloramphenicol causes fusion of separated nucleoids in Escherichia coli K-12 cells and filaments , 1996, Journal of bacteriology.

[142]  Davide Marenduzzo,et al.  The depletion attraction: an underappreciated force driving cellular organization , 2006, The Journal of cell biology.

[143]  Martin Weigt,et al.  A thermodynamic model for the agglomeration of DNA-looping proteins , 2008, 0801.1480.

[144]  Paul A. Wiggins,et al.  Protein-mediated molecular bridging: a key mechanism in biopolymer organization. , 2009, Biophysical journal.

[145]  S. Muller,et al.  Polymer-monovalent salt-induced DNA compaction studied via single-molecule microfluidic trapping. , 2012, Lab on a chip.

[146]  L. Moulin,et al.  Topological insulators inhibit diffusion of transcription‐induced positive supercoils in the chromosome of Escherichia coli , 2004, Molecular microbiology.

[147]  B. Ha,et al.  Overlapping two self-avoiding polymers in a closed cylindrical pore: Implications for chromosome segregation in a bacterial cell. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[148]  A. Travers,et al.  An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. , 2001, Nucleic acids research.