Iterated Function System and Ruelle Operator

We consider a generalized iterated function system where the weights are variable functions. By using the Ruelle operator and a dynamical system consideration we prove that if the system is contractive and the weights are strictly positive functions and satisfy the Dini condition, then there exists a unique eigenmeasure Ž . corresponding to the Ruelle operator on the attractor. If in addition the maps are conformal and satisfy the open set condition, then we prove that they satisfy the strong open set condition, and by using this we can give a description of the L p-scaling spectrum and the multifractal structure of the eigenmeasure. The work w Ž . extends some results of Proc. London Math. Soc. 73 1996 , 105]154; Ad ̈ . Appl. Ž . Ž . Math. 19 1997 , 486]513; J. Statist. Phys. 86 1997 , 233]275; Indiana Unï . Math. Ž . x J. 42 1993 , 367]411 . Q 1999 Academic Press

[1]  Hubert Hennion,et al.  Sur un théorème spectral et son application aux noyaux lipchitziens , 1993 .

[2]  D. Rand The singularity spectrum f (α) for cookie-cutters , 1989 .

[3]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[4]  M. Barnsley,et al.  Invariant measures for Markov processes arising from iterated function systems with place-dependent , 1988 .

[5]  A. Fan ERGODICITY, UNIDIMENSIONALITY AND MULTIFRACTALITY OF SELF-SIMILAR MEASURES , 1996 .

[6]  M. Hata On some properties of set-dynamical systems , 1985 .

[7]  R. Mauldin,et al.  Multifractal decompositions of Moran fractals , 1992 .

[8]  Andreas Schief,et al.  Separation properties for self-similar sets , 1994 .

[9]  Non-ergodicity for C1 expanding maps and g-measures , 1996, Ergodic Theory and Dynamical Systems.

[10]  S. Krantz Fractal geometry , 1989 .

[11]  Sze-Man Ngai A dimension result arising from the $L^q$-spectrum of a measure , 1997 .

[12]  H. Weiss,et al.  A Multifractal Analysis Of Gibbs Measures For Conformal Expanding Maps And Markov Moran Geometric Co , 1997 .

[13]  David Ruelle,et al.  Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics , 1978 .

[14]  Tong Zhang,et al.  Densities of Self-Similar Measures on the Line , 1995, Exp. Math..

[15]  David A. Rand,et al.  The entropy function for characteristic exponents , 1987 .

[16]  Ka-Sing Lau,et al.  Multifractal Measures and a Weak Separation Condition , 1999 .

[17]  Mariusz Urbański,et al.  Dimensions and Measures in Infinite Iterated Function Systems , 1996 .

[18]  K. Lau,et al.  Mean quadratic variations and Fourier asymptotics of self-similar measures , 1993 .

[19]  Tomasz Szarek Invariant measures for iterated function systems , 2000 .

[20]  R. Strichartz Self-similar measures and their Fourier transforms. II , 1993 .

[21]  W. Rudin Real and complex analysis , 1968 .