Precambrian crustal structure in Africa and Arabia: Evidence lacking for secular variation

We review the thickness and shear wave velocity structure of Precambrian crust in Africa and Arabia, where over 90% of the landmass is comprised of Archean and Proterozoic terranes, and examine the data for evidence of secular variation. The data come from many published 1D shear wave velocity profiles obtained by jointly inverting receiver functions and surface wave dispersion measurements, 35 new 1D shear wave velocity profiles for locations in eastern Africa, and a new map of crustal thickness for Africa and Arabia derived from modeling satellite gravity data. We find for both Archean and Proterozoic terranes a similar range of crustal thicknesses (~ 33–45 km), similar mean crustal shear wave velocities (~ 3.6–3.7 km/s), and similar amounts of heterogeneity in lower crustal structure, as reflected in the thickness of lowermost crust with shear wave velocities ≥ 4.0 km/s. There is little evidence for secular variation in crustal structure, indicating that there may have been few changes over much of Earth's history in the processes that form the continental crust. Post-formation tectonic events also may have modified many of the terranes to such an extent that secular trends arising from crustal genesis may be difficult to recognize.

[1]  K. Kaila,et al.  Upper mantle shear-wave velocity structure in the Japan region , 1974, Bulletin of the Seismological Society of America.

[2]  Franz Barthelmes,et al.  Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models , 2009 .

[3]  J. Liégeois,et al.  Crustal Evolution of the Northern Kibaran Belt, Eastern and Central Africa , 2013 .

[4]  J. Kramers,et al.  The Limpopo Belt , 2007 .

[5]  R. Herrmann,et al.  Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities , 2003 .

[6]  D. Eaton,et al.  Precambrian crustal evolution: Seismic constraints from the Canadian Shield , 2010 .

[7]  R. Tchameni,et al.  Neoarchaean crustal evolution in the Congo Craton: evidence from K rich granitoids of the Ntem Complex, southern Cameroon , 2000 .

[8]  M. Pasyanos,et al.  Shear wave velocity structure of the lower crust in southern Africa: evidence for compositional heterogeneity within Archaean and Proterozoic terrains , 2009 .

[9]  G. A. Thompson,et al.  The Nature of the Mohorovicic Discontinuity , 1989 .

[10]  S. Bloch,et al.  Velocities in the crust and upper mantle of southern Africa from multi-mode surface wave dispersion , 1969 .

[11]  T. J. Owens,et al.  Seismic experiment reveals rifting of craton in Tanzania , 1996 .

[12]  Charles J. Ammon,et al.  Iterative deconvolution and receiver-function estimation , 1999 .

[13]  R. Gallacher,et al.  The development of magmatism along the Cameroon Volcanic Line: Evidence from teleseismic receiver functions , 2012 .

[14]  F. Meer,et al.  Comment on ‘ A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution ’ by Getachew , 2022 .

[15]  H. Austrheim Eclogite formation and dynamics of crustal roots under continental collision zones , 1991 .

[16]  C. Ammon,et al.  Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities , 2005 .

[17]  Hiroo Kanamori,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[18]  C. Ammon,et al.  Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa , 2005 .

[19]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[20]  R. E. Long,et al.  The structure of East Africa using surface wave dispersion and Durham seismic array data , 1972 .

[21]  M. D. Wit,et al.  Structural variations of the crust in the Southwestern Cape, deduced from seismic receiver functions , 2001 .

[22]  D. H. Griffiths,et al.  Seismic Refraction Line in the Gregory Rift , 1971 .

[23]  D. James,et al.  Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution , 2002 .

[24]  T. Schlüter,et al.  Geology of East Africa , 1997 .

[25]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[26]  A. Nyblade,et al.  S-WAVE VELOCITY STRUCTURE OF THE CRUST AND UPPER MANTLE BENEATH KENYA IN COMPARISON TO TANZANIA AND ETHIOPIA: IMPLICATIONS FOR THE FORMATION OF THE EAST AFRICAN AND ETHIOPIAN PLATEAUS , 2009 .

[27]  R. Shackleton Precambrian collision tectonics in Africa , 1986, Geological Society, London, Special Publications.

[28]  Andrew A. Nyblade,et al.  Upper mantle shear wave velocity structure beneath the East African plateau: evidence for a deep, plateauwide low velocity anomaly , 2012 .

[29]  J. H. Stephen,et al.  Triggered telerecording seismic equipment , 1949 .

[30]  Charles J. Ammon,et al.  Lithospheric Structure of the Arabian Shield from the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations , 2000 .

[31]  David H. Cornell Namaqua-Natal Province , 2006 .

[32]  D. Oldenburg The inversion and interpretation of gravity anomalies , 1974 .

[33]  David E. James,et al.  Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons , 2001 .

[34]  A. L. Hales,et al.  Evidence for an Intermediate Layer from Crustal Structure Studies in the Eastern Transvaal , 1959 .

[35]  C. Langston,et al.  Broadband seismic experiments probe the East African Rift , 2002 .

[36]  G. Randall,et al.  On the nonuniqueness of receiver function inversions , 1990 .

[37]  L. Dorbath,et al.  A seismic refraction study of the crustal structure associated with the Adamawa Plateau and Garoua Rift, Cameroon, West Africa , 1985 .

[38]  Robert L. Parker,et al.  The Rapid Calculation of Potential Anomalies , 1973 .

[39]  S. Mueller,et al.  Average Structure of the Crust and Upper Mantle in East Africa , 1973 .

[40]  E. Sandvol,et al.  Crustal structure of the Arabian Plate: New constraints from the analysis of teleseismic receiver functions , 2005 .

[41]  R. Armstrong,et al.  SHRIMP U-Pb zircon geochronology of the Hurungwe granite northwest Zimbabwe:Age constraints on the timing of the Magondi orogeny and implications for the correlation between the Kheis and Magondi Belts. , 2001 .

[42]  A. Schumann,et al.  Crustal thinning beneath the Rwenzori region, Albertine rift, Uganda, from receiver-function analysis , 2010 .

[43]  P. Hinds,et al.  PROGRAM OF STUDY , 2000 .

[44]  R. Hilst,et al.  Crustal thickness, discontinuity depth, and upper mantle structure beneath southern Africa: constraints from body wave conversions , 2002 .

[45]  W. Griffin,et al.  The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution , 2009 .

[46]  R. Durrheim,et al.  A seismic refraction investigation of the Archaean Kaapvaal Craton, South Africa, using mine tremors as the energy source , 1992 .

[47]  C. Wright,et al.  Pn arrivals and lateral variations of Moho geometry beneath the Kaapvaal craton , 2003 .

[48]  S. Pisarevsky,et al.  Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia puzzle , 2008 .

[49]  P. Gane,et al.  A seismic investigation of crustal structure in the Western Transvaal , 1952 .

[50]  R. E. Long,et al.  Crustal Structure of the East African Rift Zone , 1973 .

[51]  C. Moreau,et al.  The Cameroon Line: A Review , 1991 .

[52]  Y. Tsai,et al.  S-wave velocity structure of the crust and upper mantle under southeastern China by surface wave dispersion analysis , 2000 .

[53]  C. Teyssier,et al.  Gravitational collapse of the continental crust: definition, regimes and modes , 2001 .

[54]  S. H. Richardson,et al.  Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle , 2011, Science.

[55]  G. Nolet,et al.  A model for the deep structure of the East African rift system from simultaneous inversion of teleseismic data , 1982 .

[56]  David Gómez-Ortiz,et al.  3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg's algorithm , 2005, Comput. Geosci..

[57]  T. J. Owens,et al.  Active foundering of a continental arc root beneath the southern Sierra Nevada in California , 2004, Nature.

[58]  C. Wright South African seismicity, April 1997 to April 1999, and regional variations in the crust and uppermost mantle of the Kaapvaal craton , 2003 .

[59]  P. Dirks,et al.  Crust–mantle decoupling and the growth of the Archaean Zimbabwe craton , 2002 .

[60]  P. Reya,et al.  Gravitational collapse of the continental crust : definition , regimes and modes , 2001 .

[61]  P. Gane,et al.  Crustal structure in the Transvaal , 1956 .

[62]  S. Manya,et al.  Dating basaltic volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton using the Sm–Nd method: implications for the geological evolution of the Tanzania Craton , 2003 .

[63]  R. J. Hart,et al.  Formation of an Archaean continent , 1992, Nature.

[64]  T. J. Owens,et al.  Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities , 1997 .

[65]  S. Goldstein,et al.  An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling , 1989 .

[66]  C. Okereke,et al.  A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation , 1987 .

[67]  J. Healy,et al.  Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure , 1985 .

[68]  B. Kennett,et al.  AusMoho: the variation of Moho depth in Australia , 2011 .

[69]  M. Strecker,et al.  Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Central Anatolian Plateau, Turkey , 2012 .

[70]  P. Rey,et al.  Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex , 1995 .

[71]  N. Snelling,et al.  The Geochronology and Evolution of Africa , 1984 .

[72]  N. Christensen Poisson's ratio and crustal seismology , 1996 .

[73]  A. M. Goodwin Principles of Precambrian Geology , 1996 .

[74]  K. Fuchs,et al.  Seismic-refraction studies of the Afro-Arabian rift system — a brief review , 1997 .

[75]  P. Barbey,et al.  Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroon) , 1988 .

[76]  D. James,et al.  Crustal structure of the Kaapvaal craton and its significance for early crustal evolution , 2003 .

[77]  Lupei Zliu,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[78]  D. Wiens,et al.  Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions , 2010 .

[79]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[80]  M. van der Meijde,et al.  Gravity derived Moho for South America , 2013 .

[81]  Charles A. Langston,et al.  Structure under Mount Rainier, Washington, inferred from teleseismic body waves , 1979 .

[82]  K. Fuchs Synopsis SFB 108 — stress and stress release in the lithosphere1 , 1997 .

[83]  A. Michard,et al.  U/pb dating of precambrian rocks from northern cameroon, orogenic evolution and chronology of the pan-african belt of central africa , 1987 .

[84]  W. Mooney,et al.  Archean and Proterozoic crustal evolution: Evidence from crustal seismology , 1991 .

[85]  A. Nyblade,et al.  Moho depths and Poisson's ratios of Precambrian crust in East Africa: Evidence for similarities in Archean and Proterozoic crustal structure , 2012 .

[86]  J. Ebbing,et al.  Comment on ‘A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution’ by Getachew E. Tedla, M. van der Meijde, A. A. Nyblade and F. D. van der Meer , 2012 .

[87]  C. Ammon,et al.  Continental crust composition constrained by measurements of crustal Poisson's ratio , 1995, Nature.

[88]  Stephen S. Gao,et al.  Southern African crustal evolution and composition: Constraints from receiver function studies , 2006 .

[89]  W. Mooney,et al.  Evolution of the Precambrian lithosphere: Seismological and geochemical constraints , 1994 .

[90]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[91]  M. Pasyanos,et al.  A top to bottom lithospheric study of Africa and Arabia , 2006 .

[92]  R. Armstrong,et al.  SHRIMP U-Pb zircon geochronology of granites from the central zone, Limpopo Belt, southern Africa; implications for the age of the Limpopo Orogeny , 1998 .

[93]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[94]  Constraining velocity and density contrasts across the crust–mantle boundary with receiver function amplitudes , 2007 .

[95]  R. Durrheim,et al.  A seismic refraction investigation of the Namaqualand Metamorphic Complex, South Africa , 1990 .

[96]  A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution , 2011 .

[97]  J. Cassidy,et al.  Numerical experiments in broadband receiver function analysis , 1992, Bulletin of the Seismological Society of America.

[98]  R. Carlson,et al.  Program to study crust and mantle of the Archean craton in southern Africa , 1996 .

[99]  C. Langston,et al.  Crustal thickness estimate at AAE (Addis-Ababa, Ethiopia) and Nai (Nairobi, Kenya) using teleseismic P-wave conversions , 1985 .

[100]  J. Lenoir,et al.  The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure , 1994 .