Nanoscale measurement of giant saturation magnetization in α″-Fe16N2 by electron energy-loss magnetic chiral dichroism.

[1]  J. Buban,et al.  Effect of cation ratio and order on magnetic circular dichroism in the double perovskite Sr2Fe1+xRe1-xO6. , 2018, Ultramicroscopy.

[2]  P. Werner,et al.  Direct imaging of structural changes induced by ionic liquid gating leading to engineered three-dimensional meso-structures , 2018, Nature Communications.

[3]  J. Mayer,et al.  Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy , 2018, Nature Materials.

[4]  T. Suemasu,et al.  Highly oriented epitaxial (α′′+α′)-Fe 16 N 2 films on α-Fe(001) buffered MgAl 2 O 4 (001) substrates and their magnetization , 2017 .

[5]  K. Leifer,et al.  Detection of magnetic circular dichroism with subnanometer convergent electron beams , 2016 .

[6]  C. Jia,et al.  Direct Demonstration of a Magnetic Dead Layer Resulting from A‐Site Cation Inhomogeneity in a (La,Sr)MnO3 Epitaxial Film System , 2016 .

[7]  S. Muto,et al.  Magnetic measurements with atomic-plane resolution , 2016, Nature Communications.

[8]  H. L. Xin,et al.  Detection of Magnetic Circular Dichroism in Amorphous Materials Utilizing a Single-Crystalline Overlayer , 2016, 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS).

[9]  J. Barthel,et al.  FEI Titan 80-300 TEM , 2016 .

[10]  Jing Zhu,et al.  A general way for quantitative magnetic measurement by transmitted electrons , 2016, Scientific Reports.

[11]  Jianping Wang,et al.  FeN foils by nitrogen ion-implantation , 2014 .

[12]  S. Muto,et al.  New algorithm for efficient Bloch-waves calculations of orientation-sensitive ELNES. , 2013, Ultramicroscopy.

[13]  R. Yu,et al.  Quantitative experimental determination of site-specific magnetic structures by transmitted electrons , 2013, Nature Communications.

[14]  C. Sanchez-hanke,et al.  Fabrication of $\hbox{Fe}_{16}\hbox{N}_{2}$ Films by Sputtering Process and Experimental Investigation of Origin of Giant Saturation Magnetization in $\hbox{Fe}_{16}\hbox{N}_{2}$ , 2012, IEEE Transactions on Magnetics.

[15]  A. Petford-Long,et al.  Three-dimensional quantitative chemical roughness of buried ZrO2/In2O3 interfaces via energy-filtered electron tomography , 2012 .

[16]  Yingchang Yang,et al.  Self-organized rod-like nanostructure in Pr2Fe14B-type alloy and its role in inducing texture during the early stages of disproportionation , 2011 .

[17]  Jianping Wang,et al.  Epitaxial high saturation magnetization FeN thin films on Fe(001) seeded GaAs(001) single crystal wafer using facing target sputterings , 2011 .

[18]  Ying-Chieh Chen,et al.  Improvement of field emission performance on nitrogen ion implanted ultrananocrystalline diamond films through visualization of structure modifications , 2011 .

[19]  D. Muller Structure and bonding at the atomic scale by scanning transmission electron microscopy. , 2009, Nature materials.

[20]  O. Eriksson,et al.  Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. , 2008, Physical review letters.

[21]  P. Schattschneider,et al.  Experimental application of sum rules for electron energy loss magnetic chiral dichroism , 2007, 0707.1585.

[22]  O. Eriksson,et al.  Sum rules for electron energy loss near edge spectra , 2007, 0706.0402.

[23]  Jing Zhu,et al.  H2-induced environmental embrittlement in ordered and disordered Ni3Fe: An electronic structure approach , 2007 .

[24]  Jing Zhu,et al.  Investigation of electronic structures of ordered and disordered Ni3Fe by electron energy loss spectroscopy , 2006 .

[25]  P. Schattschneider,et al.  Detection of magnetic circular dichroism using a transmission electron microscope , 2006, Nature.

[26]  J. Liu,et al.  Study of the interfacial structure of a Pt/α-Al2O3 model catalyst under high-temperature hydrogen reduction , 2005 .

[27]  Z. Li,et al.  Mössbauer studies of α″-Fe16N2 and α′-Fe8N films , 2001 .

[28]  M. Takahashi,et al.  α″-Fe16N2 problem — giant magnetic moment or not , 2000 .

[29]  D. C. Sun,et al.  Epitaxial single crystal Fe16N2 films grown by facing targets sputtering , 1996 .

[30]  A. Sakuma Electronic and magnetic structure of iron nitride, Fe16N2 (invited) , 1996 .

[31]  A. Sakuma,et al.  Magnetic and Mössbauer studies of single‐crystal Fe16N2 and Fe‐N martensite films epitaxially grown by molecular beam epitaxy (invited) , 1994 .

[32]  Hironobu Takahashi,et al.  Magnetic moment of a?-Fe16N2 films (invited) , 1994 .

[33]  J. Coey The magnetization of bulk α‘Fe16N2 (invited) , 1994 .

[34]  Pearson,et al.  White lines and d-electron occupancies for the 3d and 4d transition metals. , 1993, Physical review. B, Condensed matter.

[35]  Masae Takahashi,et al.  New Magnetic Material Having Ultrahigh Magnetic Moment , 1972 .

[36]  John C. Slater,et al.  Electronic Structure of Alloys , 1937 .