Analysis of Finite Element Domain Embedding Methods for Curved Domains using Uniform Grids

We analyze the error of a finite element domain embedding method for elliptic equations on a domain $\omega$ with curved boundary. The domain is embedded in a rectangle $R$ on which uniform mesh and linear continuous elements are employed. The numerical scheme is based on an extension of the differential equation from $\omega$ to $R$ by regularization with a small parameter $\epsilon$ (for Neumann and Robin problems), or penalty with a large parameter $\epsilon^{-1}$ (for the Dirichlet problem), or a mixture of these (for a mixed boundary value problem). For Neumann and Robin problems, we prove that when $\epsilon\le h$ (the mesh size), the error in the $H^1(\omega)$ norm is of the optimal order $\mathcal{O}(h)$. For the Dirichlet problem, when $\epsilon\le h^{1/2}$, the error is $\mathcal{O}(h^{1/2})$ that is not optimal. If the mesh is adjusted around $\partial\omega$ to fit it, then the optimal convergence rate $\mathcal{O}(h)$ holds for the Dirichlet problem if $\omega$ is convex and $\epsilon\le h$. If $\omega$ is not convex, then the convergence rate can only be improved to $\mathcal{O}(h^{2/3})$ by such mesh adjustment, with the parameter being $\epsilon=h^{2/3}$. In this latter case, a parameter smaller than $h^{2/3}$ thwarts the convergence rate, which is verified by a numerical result.

[1]  Philippe Angot,et al.  A unified fictitious domain model for general embedded boundary conditions , 2005 .

[2]  Shuai Lu,et al.  On the balancing principle for some problems of Numerical Analysis , 2007, Numerische Mathematik.

[3]  O. Widlund,et al.  On finite element domain imbedding methods , 1990 .

[4]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[5]  Christoph Börgers,et al.  A triangulation algorithm for fast elliptic solvers based on domain imbedding , 1990 .

[6]  Roland Glowinski,et al.  Error estimates for fictitious domain/penalty/finite element methods , 1992 .

[7]  A. Knyazev,et al.  Preconditioned Iterative Methods in a Subspace for Linear Algebraic Equations with Large Jumps in the Coefficients , 1994 .

[8]  Olivier Pironneau,et al.  The Chimera method for a model problem , 2003 .

[9]  A. Agouzal,et al.  Discontinuous Hybrid Primal Finite Element Method for Elliptic Equations , 2004 .

[10]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[11]  I. Babuska The Finite Element Method with Penalty , 1973 .

[12]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[13]  Sheng Zhang A domain embedding method for mixed boundary value problems , 2006 .

[14]  Sergei V. Pereverzyev,et al.  On the Adaptive Selection of the Parameter in Regularization of Ill-Posed Problems , 2005, SIAM J. Numer. Anal..

[15]  Olivier Pironneau,et al.  A FICTITIOUS DOMAIN BASED GENERAL PDE SOLVER , 2004 .

[16]  Sheng Zhang,et al.  Equivalence estimates for a class of singular perturbation problems , 2006 .

[17]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[18]  Olof B. Widlund,et al.  Lavrentiev regularization + Ritz approximation = uniform finite element error estimates for differential equations with rough coefficients , 2003, Math. Comput..

[19]  Yu. A. Kuznetsov Domain decomposition and fictitious domain methods with distributed Lagrange multipliers , .

[20]  Roland Glowinski,et al.  Wavelet and Finite Element Solutions for the Neumann Problem Using Fictitious Domains , 1996 .

[21]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[22]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[23]  Sheng Zhang,et al.  SHARP CONVERGENCE RATE OF DOMAIN EMBEDDING METHODS FOR VARIOUS BOUNDARY CONDITIONS , 2006 .