Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules

[1]  H. Urlaub,et al.  Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration , 2022, Science advances.

[2]  E. Schuman,et al.  The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity , 2021, Science advances.

[3]  Julijana Gjorgjieva,et al.  Emergence of local and global synaptic organization on cortical dendrites , 2021, Nature Communications.

[4]  T. Schikorski,et al.  A large-scale nanoscopy and biochemistry analysis of postsynaptic dendritic spines , 2021, Nature Neuroscience.

[5]  Y. Goda,et al.  Heterosynaptic cross-talk of pre- and postsynaptic strengths along segments of dendrites. , 2021, Cell reports.

[6]  Y. Goda,et al.  My Neighbour Hetero—deconstructing the mechanisms underlying heterosynaptic plasticity , 2020, Current Opinion in Neurobiology.

[7]  E. Schuman,et al.  Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression , 2020, Proceedings of the National Academy of Sciences.

[8]  E. Schuman,et al.  Statistical Laws of Protein Motion in Neuronal Dendritic Trees , 2020, Cell reports.

[9]  T. Sumi,et al.  Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors , 2020, Scientific Reports.

[10]  Roberto Araya,et al.  A spike-timing-dependent plasticity rule for dendritic spines , 2020, Nature Communications.

[11]  D. Hoffman,et al.  Paradoxical relationships between active transport and global protein distributions in neurons , 2020, bioRxiv.

[12]  D. Choquet,et al.  Linking glutamate receptor movements and synapse function , 2020, Science.

[13]  Y. Goda,et al.  Heterosynaptic cross-talk of pre- and postsynaptic strengths along segments of dendrites , 2020, bioRxiv.

[14]  Judit K. Makara,et al.  Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons , 2020, The Journal of Neuroscience.

[15]  Veronika A. Herzog,et al.  Determining mRNA Stability by Metabolic RNA Labeling and Chemical Nucleoside Conversion. , 2019, Methods in molecular biology.

[16]  Bernardo Rudy,et al.  Heterosynaptic Plasticity Determines the Set-Point for Cortical Excitatory-Inhibitory Balance , 2018, bioRxiv.

[17]  C. Clopath,et al.  Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons , 2019, Cell reports.

[18]  Panayiota Poirazi,et al.  Synaptic Clustering and Memory Formation , 2019, Front. Mol. Neurosci..

[19]  E. Schuman,et al.  How mRNA Localization and Protein Synthesis Sites Influence Dendritic Protein Distribution and Dynamics , 2019, Neuron.

[20]  Joanna Jędrzejewska-Szmek,et al.  Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model , 2018, eLife.

[21]  Laura B. Moores Compartments , 2018, Cultural and Pedagogical Inquiry.

[22]  Anh Duong Vo,et al.  Competition for synaptic building blocks shapes synaptic plasticity , 2017, bioRxiv.

[23]  Christian Lohmann,et al.  A BDNF-Mediated Push-Pull Plasticity Mechanism for Synaptic Clustering. , 2018, Cell reports.

[24]  G. Antunes,et al.  AMPA receptor trafficking and its role in heterosynaptic plasticity , 2018, Scientific Reports.

[25]  D. Choquet,et al.  Neuronal Activity and Intracellular Calcium Levels Regulate Intracellular Transport of Newly Synthesized AMPAR , 2018, Cell reports.

[26]  M. Sur,et al.  Locally coordinated synaptic plasticity of visual cortex neurons in vivo , 2018, Science.

[27]  Erin M. Schuman,et al.  Alternative 3′ UTRs Modify the Localization, Regulatory Potential, Stability, and Plasticity of mRNAs in Neuronal Compartments , 2018, Neuron.

[28]  Jae-Hyung Jeon,et al.  Neuronal messenger ribonucleoprotein transport follows an aging Lévy walk , 2018, Nature Communications.

[29]  Seok-Jin R. Lee,et al.  CaMKII Autophosphorylation Is Necessary for Optimal Integration of Ca2+ Signals during LTP Induction, but Not Maintenance , 2017, Neuron.

[30]  J. Wilusz,et al.  Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. , 2017, Methods.

[31]  E. Schuman,et al.  Visualization of newly synthesized neuronal RNA in vitro and in vivo using click-chemistry , 2016, RNA biology.

[32]  Byung Hun Lee,et al.  Imaging Single-mRNA Localization and Translation in Live Neurons , 2016, Molecules and cells.

[33]  Panayiota Poirazi,et al.  Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites , 2016, Cell reports.

[34]  J. McNamara,et al.  Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity , 2016, Nature.

[35]  Bertalan K. Andrásfalvy,et al.  Location-dependent synaptic plasticity rules by dendritic spine cooperativity , 2016, Nature Communications.

[36]  S. Raghavachari,et al.  Protein Crowding within the Postsynaptic Density Can Impede the Escape of Membrane Proteins , 2016, The Journal of Neuroscience.

[37]  Cian O'Donnell,et al.  Dendritic trafficking faces physiologically critical speed-precision tradeoffs , 2016, bioRxiv.

[38]  Daniela C Dieterich,et al.  Proteomics of the Synapse – A Quantitative Approach to Neuronal Plasticity* , 2015, Molecular & Cellular Proteomics.

[39]  Christian Lohmann,et al.  Spontaneous Activity Drives Local Synaptic Plasticity In Vivo , 2015, Neuron.

[40]  Everton J. Agnes,et al.  Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks , 2015, Nature Communications.

[41]  E. Schuman,et al.  Direct visualization of newly synthesized target proteins in situ , 2015, Nature Methods.

[42]  L. Parajuli,et al.  Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. , 2015, Cell reports.

[43]  William O. Hancock,et al.  Bidirectional cargo transport: moving beyond tug of war , 2014, Nature Reviews Molecular Cell Biology.

[44]  Terrence J. Sejnowski,et al.  Selective Memory Generalization by Spatial Patterning of Protein Synthesis , 2014, Neuron.

[45]  Inbal Israely,et al.  Synaptic competition in structural plasticity and cognitive function , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Wulfram Gerstner,et al.  Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector , 2013, PLoS Comput. Biol..

[47]  A. Triller,et al.  The Dynamic Synapse , 2013, Neuron.

[48]  P. Bressloff,et al.  Stochastic models of intracellular transport , 2013 .

[49]  P. De Koninck,et al.  Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses , 2012, The Journal of cell biology.

[50]  Paul Smolen,et al.  Molecular Constraints on Synaptic Tagging and Maintenance of Long-Term Potentiation: A Predictive Model , 2012, PLoS Comput. Biol..

[51]  Erin M. Schuman,et al.  The Local Transcriptome in the Synaptic Neuropil Revealed by Deep Sequencing and High-Resolution Imaging , 2012, Neuron.

[52]  O. Thoumine,et al.  Unified quantitative model of AMPA receptor trafficking at synapses , 2012, Proceedings of the National Academy of Sciences.

[53]  M. Kiebler,et al.  Mechanisms of dendritic mRNA transport and its role in synaptic tagging , 2011, The EMBO journal.

[54]  N. Friedman,et al.  Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells , 2011, Nature Biotechnology.

[55]  Susumu Tonegawa,et al.  The Dendritic Branch Is the Preferred Integrative Unit for Protein Synthesis-Dependent LTP , 2011, Neuron.

[56]  R. Yasuda,et al.  AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation , 2010, Proceedings of the National Academy of Sciences.

[57]  Paul C Bressloff,et al.  Local synaptic signaling enhances the stochastic transport of motor-driven cargo in neurons , 2010 .

[58]  Richard Hans Robert Hahnloser,et al.  Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity , 2010, Neuron.

[59]  Robert H Singer,et al.  Single mRNA tracking in live cells. , 2010, Methods in enzymology.

[60]  R. Morris,et al.  Making memories last: the synaptic tagging and capture hypothesis , 2010, Nature Reviews Neuroscience.

[61]  Bernardo L Sabatini,et al.  Distinct Domains within PSD-95 Mediate Synaptic Incorporation, Stabilization, and Activity-Dependent Trafficking , 2009, The Journal of Neuroscience.

[62]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[63]  P. Bressloff,et al.  Directed intermittent search for hidden targets , 2009 .

[64]  Mark C. W. van Rossum,et al.  State Based Model of Long-Term Potentiation and Synaptic Tagging and Capture , 2009, PLoS Comput. Biol..

[65]  Wulfram Gerstner,et al.  Tag-Trigger-Consolidation: A Model of Early and Late Long-Term-Potentiation and Depression , 2008, PLoS Comput. Biol..

[66]  Brad E. Pfeiffer,et al.  Rapid Translation of Arc/Arg3.1 Selectively Mediates mGluR-Dependent LTD through Persistent Increases in AMPAR Endocytosis Rate , 2008, Neuron.

[67]  Melanie J. I. Müller,et al.  Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors , 2008, Proceedings of the National Academy of Sciences.

[68]  Berton A. Earnshaw,et al.  Diffusion-trapping model of receptor trafficking in dendrites. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  E. Schutter,et al.  Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines , 2006, Neuron.

[70]  Paul C Bressloff,et al.  Biophysical Model of AMPA Receptor Trafficking and Its Regulation during Long-Term Potentiation/Long-Term Depression , 2006, The Journal of Neuroscience.

[71]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[72]  Eckart D Gundelfinger,et al.  Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics , 2006, PLoS biology.

[73]  E. Schuman,et al.  Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis , 2006, Cell.

[74]  Nobutaka Hirokawa,et al.  Molecular motors and mechanisms of directional transport in neurons , 2005, Nature Reviews Neuroscience.

[75]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[76]  R. Morris,et al.  Heterosynaptic co-activation of glutamatergic and dopaminergic afferents is required to induce persistent long-term potentiation , 2004, Neuropharmacology.

[77]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[78]  D. Choquet,et al.  Direct imaging of lateral movements of AMPA receptors inside synapses , 2003, The EMBO journal.

[79]  S. Royer,et al.  Conservation of total synaptic weight through balanced synaptic depression and potentiation , 2003, Nature.

[80]  A. Verkhratsky,et al.  The endoplasmic reticulum and neuronal calcium signalling. , 2002, Cell calcium.

[81]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[82]  O. Steward,et al.  Protein synthesis at synaptic sites on dendrites. , 2001, Annual review of neuroscience.

[83]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[84]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[85]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[86]  E. Mohr,et al.  Subcellular RNA compartmentalization , 1999, Progress in Neurobiology.

[87]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[88]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[89]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[90]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[91]  K. Miller,et al.  Synaptic Economics: Competition and Cooperation in Synaptic Plasticity , 1996, Neuron.

[92]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[93]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[94]  O. Steward,et al.  mRNA distribution within dendrites: relationship to afferent innervation. , 1995, Journal of neurobiology.

[95]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[96]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[97]  G. Lynch,et al.  Heterosynaptic depression: a postsynaptic correlate of long-term potentiation , 1977, Nature.

[98]  John H. Holland,et al.  Tests on a cell assembly theory of the action of the brain, using a large digital computer , 1956, IRE Trans. Inf. Theory.