Gold-Nanoparticle-Loaded Carbonate-Modified Titanium(IV) Oxide Surface: Visible-Light-Driven Formation of Hydrogen Peroxide from Oxygen.

Gold nanoparticle-loaded rutile TiO2 with a bimodal size distribution around 10.6 nm and 2.3 nm (BM-Au/TiO2 ) was prepared by the deposition precipitation and chemical reduction (DP-CR) technique. Visible-light irradiation (λ>430 nm) of the BM-Au/TiO2 plasmonic photocatalyst yields 35 μm H2 O2 in aerated pure water at irradiation time (tp )=1 h, and the H2 O2 concentration increases to 640±60 μm by the addition of 4 % HCOOH as a sacrificing electron donor. Further, a carbonate-modified surface BM-Au/TiO2 (BM-Au/TiO2 -CO3 (2-) ) generates a millimolar level of H2 O2 at tp =1 h with a quantum efficiency (Φ) of 5.4 % at λ=530 nm under the same conditions. The recycle experiments confirmed the stable performance of BM-Au/TiO2 .

[1]  S. Fukuzumi,et al.  Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions , 2011 .

[2]  Ewa Kowalska,et al.  Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. , 2009, Chemical communications.

[3]  Torsten Oekermann,et al.  Photocatalytic Activities of Different Well-defined Single Crystal TiO2 Surfaces: Anatase versus Rutile , 2011 .

[4]  Wonyong Choi,et al.  Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only , 2014 .

[5]  A. Bard,et al.  Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. , 2009, Analytical chemistry.

[6]  Yasuhiro Shiraishi,et al.  Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light , 2014 .

[7]  Claudio Minero,et al.  Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide−Fluoride System , 2000 .

[8]  Hyunwoong Park,et al.  Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors , 2004 .

[9]  J. Fierro,et al.  Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. , 2006, Angewandte Chemie.

[10]  Michael Grätzel,et al.  Influence of plasmonic Au nanoparticles on the photoactivity of Fe₂O₃ electrodes for water splitting. , 2011, Nano letters.

[11]  Noyori,et al.  A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide , 1998, Science.

[12]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[13]  Y. Ide,et al.  Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. , 2010, Journal of the American Chemical Society.

[14]  G. V. Ramesh,et al.  Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions , 2014 .

[15]  Shunsuke Tanaka,et al.  Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. , 2014, Angewandte Chemie.

[16]  H. Tada,et al.  Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(IV) dioxide. , 2010, Chemical communications.

[17]  J. Turner,et al.  Mott‐Schottky Plots and Flatband Potentials for Single Crystal Rutile Electrodes , 1982 .

[18]  Akira Fujishima,et al.  Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles , 2003 .

[19]  T. Yokoyama,et al.  Visible Light-Sensitive Cu(II)-Grafted TiO2 Photocatalysts: Activities and X-ray Absorption Fine Structure Analyses , 2009 .

[20]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[21]  Ori Hazut,et al.  Sustainable photocatalytic production of hydrogen peroxide from water and molecular oxygen , 2014 .

[22]  H. Tada,et al.  One-Step Selective Aerobic Oxidation of Amines to Imines by Gold Nanoparticle-Loaded Rutile Titanium(IV) Oxide Plasmon Photocatalyst , 2013 .

[23]  H. Tada,et al.  Size-Dependence of the Activity of Gold Nanoparticle-Loaded Titanium(IV) Oxide Plasmonic Photocatalyst for Water Oxidation. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Hiroaki Tada,et al.  In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst. , 2010, Journal of the American Chemical Society.

[25]  H. Tada,et al.  Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. , 2009, Chemical Society reviews.

[26]  H. Tada,et al.  Visible-light activity enhancement of gold-nanoparticle-loaded titanium(IV) dioxide by preferential excitation of localized surface plasmon resonance. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  Jose M. Campos-Martin,et al.  Wasserstoffperoxid‐Synthese: Perspektiven jenseits des Anthrachinon‐Verfahrens , 2006 .

[28]  Shunsuke Tanaka,et al.  Photocatalytic H2O2 Production from Ethanol/O2 System Using TiO2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles , 2012 .

[29]  H. Tada,et al.  Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. , 2014, Angewandte Chemie.

[30]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[31]  D. Astruc,et al.  Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. , 2014, Chemical Society reviews.

[32]  H. Tada,et al.  TiO2 Crystal Form-Dependence of the Au/TiO2 Plasmon Photocatalyst’s Activity , 2012 .

[33]  T. Chen,et al.  Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy , 2008 .

[34]  Jincai Zhao,et al.  Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation , 2001 .

[35]  H. Tada,et al.  Temperature- and pH-Dependence of Hydrogen Peroxide Formation from Molecular Oxygen by Gold Nanoparticle-Loaded Titanium(IV) Oxide Photocatalyst , 2016 .