Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control

With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of a neutral model with periodic delays and feedback controldndt=n(t)a(t)[email protected](t)n(t)[email protected]?i=1nb"i(t)n([email protected]"i(t))[email protected]?i=1nc"i(t)n^'([email protected]"i(t))[email protected](t)u(t)[email protected]?i=1nd"i(t)u([email protected]"i(t)),dudt=-e(t)u(t)+f(t)n(t)[email protected]?i=1ng"i(t)n([email protected]"i(t)). Our results extend and improve existing results, and have further applications in population dynamics.

[1]  Yang Kuang,et al.  Periodic solutions in periodic state-dependent delay equations and population models , 2001 .

[2]  Lu Shiping,et al.  Existence of positive periodic solutions for neutral functional differential equations with deviating arguments , 2002 .

[3]  Li Jibin,et al.  On the existence of periodic solutions of a neutral delay model of single-species Population growth , 2001 .

[4]  B. G. Zhang,et al.  On a neutral delay logistic equation , 1988 .

[5]  Jinde Cao,et al.  Positive periodic solutions of neutral Lotka-Volterra system with periodic delays , 2004, Appl. Math. Comput..

[6]  Yongkun Li,et al.  Periodic Solutions for Delay Lotka–Volterra Competition Systems , 2000 .

[7]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[8]  Xue-Zhong He,et al.  On a periodic neutral logistic equation , 1991, Glasgow Mathematical Journal.

[9]  Peixuan Weng,et al.  Global attractivity in a periodic competition system with feedback controls , 1996 .

[10]  Meng Fan,et al.  Positive Periodic Solutions of a Periodic Integro‐differential Competition System with Infinite Delays , 2001 .

[11]  Ke Wang,et al.  Global Existence of Positive Periodic Solutions of Periodic Predator–Prey System with Infinite Delays , 2001 .

[12]  Shiping Lu,et al.  On the existence of positive periodic solutions for neutral functional differential equation with multiple deviating arguments , 2003 .

[13]  K. Gopalsamy,et al.  FEEDBACK REGULATION OF LOGISTIC GROWTH , 1993 .

[14]  Peixuan Weng Existence and global stability of positive periodic solution of periodic integrodifferential systems with feedback controls , 2000 .

[15]  Li Yongkun,et al.  PERIODIC SOLUTIONS OF A PERIODIC DELAY PREDATOR-PREY SYSTEM , 1999 .

[16]  Jianhong Wu,et al.  Periodic solutions of single-species models with periodic delay , 1992 .

[17]  Tang Sanyi,et al.  Permanence and periodic solution in competitive system with feedback controls , 1998 .

[18]  Wan-Tong Li,et al.  Existence and global stability of positive periodic solutions of a predator-prey system with delays , 2003, Appl. Math. Comput..

[19]  Li Yong Kun Periodic Solution of a Periodic Neutral Delay Equation , 1997 .

[20]  Ke Wang,et al.  Periodicity in a Delayed Ratio-Dependent Predator–Prey System☆☆☆ , 2001 .

[21]  F Chen PERIODIC SOLUTIONS OF NONLINEAR INTEGRODIFFERENTIAL EQUATIONS WITH INFINITE DELAY , 2003 .

[22]  Yongkun Li,et al.  On a periodic neutral Lotka-Volterra system , 2000 .

[23]  Li Xiao POSITIVE PERIODIC SOLUTION OF SINGLE SPECIES MODEL WITH FEEDBACK REGULATION AND INFINITE DELAY , 2002 .

[24]  Jinde Cao,et al.  Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models , 2003, Appl. Math. Comput..

[25]  杨帆,et al.  EXISTENCE AND GLOBAL ATTRACTIVITY OF POSITIVE PERIODIC SOLUTION OF A LOGISTIC GROWTH SYSTEM WITH FEEDBACK CONTROL AND DEVIATING ARGUMENTS , 2001 .

[26]  Ravi P. Agarwal,et al.  Periodicity and Stability in Periodic n-Species Lotka-Volterra Competition System with Feedback Controls and Deviating Arguments , 2003 .

[27]  Yang Kuang,et al.  Periodic Solutions of Periodic Delay Lotka–Volterra Equations and Systems☆ , 2001 .

[28]  Chen Xiao-xing The n-Competing Volterra-Lotka Almost Periodic Systems with Grazing Rates , 2003 .

[29]  Yang Kuang,et al.  Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional-differential systems , 1997 .