Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics

We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting broadband short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells.

[1]  J. Sambles,et al.  Strongly coupled surface plasmons on thin shallow metallic gratings , 2008 .

[2]  Dieter Meissner,et al.  Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells , 2002 .

[3]  Srinivas Sista,et al.  Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions , 2009 .

[4]  Daniel Abou-Ras,et al.  Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells , 2004 .

[5]  Christoph J. Brabec,et al.  Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence , 2007 .

[6]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[7]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[8]  H. Fujiwara,et al.  Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells , 2009 .

[9]  Martin A. Green,et al.  Recent developments in photovoltaics , 2004 .

[10]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[11]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[12]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[13]  Gang Li,et al.  Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , 2005 .

[14]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[15]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[16]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[17]  Nils-Krister Persson,et al.  Surface plasmon increase absorption in polymer photovoltaic cells , 2007 .

[18]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[19]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[20]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[21]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[22]  Jurjen Wildeman,et al.  Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives , 2005 .

[23]  Martin Dressel,et al.  How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. , 2009, Physical review letters.

[24]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[25]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[26]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[27]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[28]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[29]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[30]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[31]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[32]  Carl Hägglund,et al.  Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons , 2008 .

[33]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[34]  Francois Flory,et al.  Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend , 2007 .

[35]  H. Nagel,et al.  Cost-effective methods of texturing for silicon solar cells , 2002 .

[36]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[37]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[38]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[39]  Yang,et al.  Long-range surface modes supported by thin films. , 1991, Physical review. B, Condensed matter.

[40]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[41]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[42]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[43]  Yidong Huang,et al.  Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. , 2009, Optics letters.

[44]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .