Haptic control with environment force estimation for telesurgery

Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.

[1]  M. Fujita,et al.  H/sup infinity / observer based force control without force sensor , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[2]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[3]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[4]  Wayne J. Book,et al.  Environment estimation for enhanced impedance control , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[5]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[6]  Septimiu E. Salcudean,et al.  Analysis of Control Architectures for Teleoperation Systems with Impedance/Admittance Master and Slave Manipulators , 2001, Int. J. Robotics Res..

[7]  Kiyoshi Ohishi,et al.  H" OBSERVER BASED FORCE CONTROL WITHOUT FORCE SENSOR , 1991 .

[8]  Septimiu E. Salcudean,et al.  Estimation of environment forces and rigid-body velocities using observers , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[9]  Blake Hannaford,et al.  A design framework for teleoperators with kinesthetic feedback , 1989, IEEE Trans. Robotics Autom..

[10]  Tsuneo Yoshikawa,et al.  Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment , 1994, IEEE Trans. Robotics Autom..

[11]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[12]  K. Ohishi,et al.  Force sensorless workspace impedance control considering resonant vibration of industrial robot , 2005, 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005..

[13]  Kiyoshi Ohishi,et al.  Force control without force sensor based on mixed sensitivity H/sup infinity / design method , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[14]  Inna Sharf,et al.  Contact Stiffness and Damping Estimation for Robotic Systems , 2003, Int. J. Robotics Res..

[15]  K. Hashtrudi-Zaad,et al.  A model-independent force observer for teleoperation systems , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[16]  Kiyoshi Ohishi,et al.  Hybrid control of force and position without force sensor , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[17]  Il Hong Suh,et al.  Disturbance observer based force control of robot manipulator without force sensor , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[18]  Gudrun De Gersem,et al.  Kinaesthetic Feedback and Enhanced Sensitivity in Robotic Endoscopic Telesurgery (Kinesthetische terugkoppeling en verhoogde gevoeligheid in robotische endoscopische telechirurgie) , 2005 .