First-principles material modeling of solid-state electrolytes with the spinel structure.

Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2…0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0…1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.

[1]  Zongping Shao,et al.  Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability , 2013 .

[2]  A. Persoons,et al.  Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure. , 2013, Physical chemistry chemical physics : PCCP.

[3]  M. Nakayama,et al.  First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. , 2012, Physical chemistry chemical physics : PCCP.

[4]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[5]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[6]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[7]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[8]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[9]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  B. Uberuaga,et al.  Cation diffusion in magnesium aluminate spinel , 2009 .

[11]  P. Blaha,et al.  Calculation of the lattice constant of solids with semilocal functionals , 2009 .

[12]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[13]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[14]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[15]  Arthur F. Voter,et al.  Introduction to the Kinetic Monte Carlo Method , 2007 .

[16]  M. Wagemaker,et al.  A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12 , 2006 .

[17]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[18]  Josh Thomas,et al.  Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel , 1999 .

[19]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[20]  Werner Weppner,et al.  Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel , 1999 .

[21]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[22]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[23]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[24]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[25]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[26]  A. Voter,et al.  Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100). , 1986, Physical review. B, Condensed matter.

[27]  A. Immorlica,et al.  Epitaxial growth of single crystal films , 1981 .

[28]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[29]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[30]  W Greatbatch,et al.  The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemakers. , 1971, IEEE transactions on bio-medical engineering.

[31]  S. Hafner Ordnung/Unordnung und Ultrarotabsorption IV. Die Absorption einiger Metalloxyde mit Spinellstruktur , 1961 .