Real-time DNA sequencing from single polymerase molecules.

[1]  Yong Kong Statistical distributions of sequencing by synthesis with probabilistic nucleotide incorporation , 2009, J. Comput. Biol..

[2]  J. Hofkens,et al.  Fluorescence‐based analysis of enzymes at the single‐molecule level , 2009, Biotechnology journal.

[3]  E. Liu,et al.  Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. , 2009, Genome research.

[4]  James B. Munro,et al.  Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. , 2009, Biophysical journal.

[5]  Hunter B. Fraser,et al.  Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing , 2009, Proceedings of the National Academy of Sciences.

[6]  Lee T. Sam,et al.  Transcriptome Sequencing to Detect Gene Fusions in Cancer , 2009, Nature.

[7]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[8]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[9]  S. Turner,et al.  Long, Processive Enzymatic Dna Synthesis Using 100% Dye-Labeled Terminal Phosphate-Linked Nucleotides , 2008, Nucleosides, nucleotides & nucleic acids.

[10]  Iwao Ohdomari,et al.  Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein-protein interaction. , 2008, Analytical chemistry.

[11]  A. Fiorini,et al.  Intrinsically bent DNA in replication origins and gene promoters. , 2008, Genetics and molecular research : GMR.

[12]  S. Ranade,et al.  Stem cell transcriptome profiling via massive-scale mRNA sequencing , 2008, Nature Methods.

[13]  Peiqian Zhao,et al.  Parallel confocal detection of single molecules in real time. , 2008, Optics letters.

[14]  S. Nelson,et al.  Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning , 2008, Nature.

[15]  Colin Echeverría Aitken,et al.  An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. , 2008, Biophysical journal.

[16]  Mathieu Foquet,et al.  Improved fabrication of zero-mode waveguides for single-molecule detection , 2008 .

[17]  Jonas Korlach,et al.  Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures , 2008, Proceedings of the National Academy of Sciences.

[18]  X. Xie,et al.  When does the Michaelis-Menten equation hold for fluctuating enzymes? , 2006, The journal of physical chemistry. B.

[19]  Antoine M. van Oijen,et al.  Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited , 2006, Nature chemical biology.

[20]  J. Rinehart U . S . Patent , 2006 .

[21]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[22]  J. Briggs,et al.  Nucleotide modification at the γ-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase , 2005, Nucleic acids research.

[23]  Wei Min,et al.  Single-molecule Michaelis-Menten equations. , 2005, The journal of physical chemistry. B.

[24]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[25]  T. Steitz,et al.  A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Fuller,et al.  TERMINAL PHOSPHATE LABELED NUCLEOTIDES: SYNTHESIS, APPLICATIONS, AND LINKER EFFECT ON INCORPORATION BY DNA POLYMERASES , 2005, Nucleosides, nucleotides & nucleic acids.

[27]  C. Fuller,et al.  Terminal phosphate-labeled nucleotides with improved substrate properties for homogeneous nucleic acid assays. , 2005, Journal of the American Chemical Society.

[28]  Mircea Cotlet,et al.  Single-enzyme kinetics of CALB-catalyzed hydrolysis. , 2005, Angewandte Chemie.

[29]  Margarita Salas,et al.  Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. , 2004, Molecular cell.

[30]  J. Detter,et al.  3.5 Phi29 DNA Polymerase Based Rolling Circle Ampli fi cation of Templates for DNA Sequencing , 2004 .

[31]  Steve Blair,et al.  Fluorescence enhancement from an array of subwavelength metal apertures. , 2003, Optics letters.

[32]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[33]  T. Nyholm,et al.  Nucleosides Nucleotides Nucleic Acids , 2003 .

[34]  C. Fuller,et al.  TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. , 2002, BioTechniques.

[35]  F. Dean,et al.  Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. , 2001, Genome research.

[36]  Patrick Meyrueis,et al.  Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology , 2000 .

[37]  D. Beckett,et al.  A minimal peptide substrate in biotin holoenzyme synthetase‐catalyzed biotinylation , 2008, Protein science : a publication of the Protein Society.

[38]  Reinhold Kliegl,et al.  Color vision : perspectives from different disciplines , 1998 .

[39]  U. Landegren,et al.  Signal amplification of padlock probes by rolling circle replication. , 1998, Nucleic acids research.

[40]  M. Sekine,et al.  Efficient synthesis of γ-methyl-capped guanosine 5′-triphosphate as a 5′-terminal unique structure of U6 RNA via a new triphosphate bond formation involving activation of methyl phosphorimidazolidate using ZnCl2 as a catalyst in DMF under anhydrous conditions , 1997 .

[41]  M. Uhlén,et al.  Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. , 1997, Protein expression and purification.

[42]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[43]  L. Blanco,et al.  Relating structure to function in phi29 DNA polymerase. , 1996, The Journal of biological chemistry.

[44]  L. Blanco,et al.  Primer‐terminus stabilization at the 3′‐5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. , 1996, The EMBO journal.

[45]  V. Gopal,et al.  Fluorescence spectroscopy analysis of active and regulatory sites of RNA polymerase. , 1996, Methods in enzymology.

[46]  L. Blanco,et al.  Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. , 1993, The Journal of biological chemistry.

[47]  L. Blanco,et al.  Initiation of phi 29 DNA replication occurs at the second 3' nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[48]  C Garmendia,et al.  Highly efficient DNA synthesis by the phage phi 29 DNA polymerase , 1989 .

[49]  C. Richardson,et al.  Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. , 1987, The Journal of biological chemistry.

[50]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[51]  Paul J. Hagerman,et al.  Sequence-directed curvature of DNA , 1986, Nature.

[52]  L. Yarbrough,et al.  Synthesis and properties of fluorescent nucleotide substrates for DNA-dependent RNA polymerases. , 1979, The Journal of biological chemistry.

[53]  L. Yarbrough,et al.  Spectroscopic techniques for study of phosphodiester bond formation by Escherichia coli RNA polymerase. , 1979, The Journal of biological chemistry.

[54]  L. Yarbrough Synthesis and properties of a new fluorescent analog of ATP: adenosine-5'-triphosphoro-gamma-1-(5-sulfonic acid) napthylamidate. , 1978, Biochemical and biophysical research communications.

[55]  E. Loewen DIFFRACTION GRATING HANDBOOK , 1970 .

[56]  M. Yoshikawa,et al.  A novel method for phosphorylation of nucleosides to 5'-nucleotides. , 1967, Tetrahedron letters.

[57]  D. Hoard,et al.  CONVERSION OF MONO- AND OLIGODEOXYRIBONUCLEOTIDES TO 5-TRIPHOSPHATES. , 1965, Journal of the American Chemical Society.