Well-posedness of the initial-boundary value problem for the Hirota equation on the half line

Abstract In this paper we study the regularity properties of Hirota equation on the right half line with data of low regularity. In particular, using an explicit solution formula of the initial and boundary value problem and the restricted norm method, we prove the local existence, uniqueness, and continuous dependence on initial data in X s , b spaces. Moreover, we obtain the global existence and that the nonlinearity of Hirota equation on the half line is smoother than the initial data.

[1]  A. Hasegawa,et al.  Nonlinear pulse propagation in a monomode dielectric guide , 1987 .

[2]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[3]  B. Guo,et al.  GLOBAL SMOOTH SOLUTION FOR NONLINEAR EVOLUTION EQUATION OF HIROTA TYPE , 1992 .

[4]  G. Staffilani On the generalized Korteweg-de Vries-type equations , 1997, Differential and Integral Equations.

[5]  Corinne Laurey,et al.  The Cauchy problem for a third order nonlinear Schrödinger equation , 1997 .

[6]  E. Compaan,et al.  Well-posedness and nonlinear smoothing for the “good” Boussinesq equation on the half-line , 2016, 1611.09255.

[7]  Hua Wang,et al.  GLOBAL WELL-POSEDNESS OF THE CAUCHY PROBLEM OF A HIGHER-ORDER SCHR¨ ODINGER EQUATION , 2007 .

[8]  D. Bahuguna,et al.  EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS TO NONLINEAR NONLOCAL FUNCTIONAL DIFFERENTIAL EQUATIONS , 2004 .

[9]  B. Guo,et al.  Long-time asymptotics for the Hirota equation on the half-line , 2018, Nonlinear Analysis.

[10]  Bing-Yu Zhang,et al.  A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane , 2001 .

[11]  J. Bona,et al.  Nonhomogeneous Boundary-Value Problems for One-Dimensional Nonlinear Schr\"odinger Equations , 2015, 1503.00065.

[12]  B. Guo,et al.  Well-posedness of the Cauchy problem for the Hirota equation in Sobolev spaces Hs , 2005 .

[13]  Zhaohui Huo,et al.  WELL-POSEDNESS FOR THE CAUCHY PROBLEM TO THE HIROTA EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES , 2005 .

[14]  Yuji Kodama,et al.  Optical solitons in a monomode fiber , 1985 .

[15]  B. Guo,et al.  Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation , 2021, Discrete & Continuous Dynamical Systems - B.

[16]  X. Carvajal LOCAL WELL-POSEDNESS FOR A HIGHER ORDER NONLINEAR SCHR ¨ ODINGER EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES , 2004 .

[17]  N. Tzirakis,et al.  Regularity properties of the cubic nonlinear Schr\"odinger equation on the half line , 2015, 1509.03546.

[18]  J. Holmer The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line , 2005, Differential and Integral Equations.

[19]  J. E. Colliander,et al.  THE GENERALIZED KORTEWEG–DE VRIES EQUATION ON THE HALF LINE , 2001 .

[20]  Justin Holmer The Initial-Boundary Value Problem for the Korteweg–de Vries Equation , 2005 .

[21]  Bing-Yu Zhang,et al.  A Nonhomogeneous Boundary-Value Problem for the Korteweg–de Vries Equation Posed on a Finite Domain , 2003 .