A STANDARD TEST CASE SUITE FOR TWO-DIMENSIONAL LINEAR TRANSPORT ON THE SPHERE: RESULTS FROM A COLLECTION OF STATE-OF-THE-ART SCHEMES
暂无分享,去创建一个
Mark A. Taylor | James Kent | Christiane Jablonowski | Eigil Kaas | Paul A. Ullrich | Donna Calhoun | A. B. Hansen | Daniel Reinert | William C. Skamarock | Peter H. Lauritzen | Peter Andrew Bosler | Oksana Guba | Jean-Francois Lamarque | M. A. Tolstykh | V. V. Shashkin | Takeshi Enomoto | Andrew Conley | L. Dong | S. Dubey | Michael J. Prather | B. Sørensen | J. Lamarque | D. Reinert | P. Lauritzen | M. Prather | A. Conley | M. Taylor | W. Skamarock | P. Ullrich | Takeshi Enomoto | D. Calhoun | E. Kaas | C. Jablonowski | J. Kent | S. Dubey | M. Tolstykh | A. Hansen | L. Dong | O. Guba | P. Bosler | V. Shashkin | B. Sørensen | Andrew J. Conley
[1] Mark Ainsworth,et al. Dispersive and Dissipative Behavior of the Spectral Element Method , 2009, SIAM J. Numer. Anal..
[2] Clive Temperton,et al. An Efficient Two‐Time‐Level Semi‐Lagrangian Semi‐Implicit Integration Scheme , 1987 .
[3] Paul A. Ullrich,et al. A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..
[4] Peter H. Lauritzen,et al. A Mass-Conservative Semi-Implicit Semi-Lagrangian Limited-Area Shallow-Water Model on the Sphere , 2006 .
[5] Akio Arakawa,et al. Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .
[6] Janusz A. Pudykiewicz. On numerical solution of the shallow water equations with chemical reactions on icosahedral geodesic grid , 2011, J. Comput. Phys..
[7] W. Collins,et al. Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .
[8] Katherine J. Evans,et al. AMIP Simulation with the CAM4 Spectral Element Dynamical Core , 2013 .
[9] C. Ollivier-Gooch,et al. A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .
[10] R. T. Williams,et al. Semi-Lagrangian Solutions to the Inviscid Burgers Equation , 1990 .
[11] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[12] D. Durran. Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .
[13] Shian‐Jiann Lin,et al. Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .
[14] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[15] J. Côté,et al. Monotonic cascade interpolation for semi‐lagrangian advection , 1999 .
[16] Bin Wang,et al. Trajectory-Tracking Scheme in Lagrangian Form for Solving Linear Advection Problems: Preliminary Tests , 2012 .
[17] Hirofumi Tomita,et al. Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .
[18] Mark A. Taylor,et al. Optimization-based limiters for the spectral element method , 2014, J. Comput. Phys..
[19] R. A. Plumb,et al. Tracer interrelationships in the stratosphere , 2007 .
[20] Stephen J. Thomas,et al. The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation , 2005, J. Sci. Comput..
[21] P. Lauritzen,et al. Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics , 2012 .
[22] Randall J. LeVeque,et al. Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains , 2008, SIAM Rev..
[23] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[24] Stephen J. Thomas,et al. A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.
[25] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[26] Jean Côté,et al. A Two-Time-Level Semi-Lagrangian Semi-implicit Scheme for Spectral Models , 1988 .
[27] C. Jablonowski,et al. Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .
[28] Todd D. Ringler,et al. Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations , 2011 .
[29] William C. Skamarock,et al. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..
[30] Mark A. Taylor,et al. High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005, Int. J. High Perform. Comput. Appl..
[31] Timothy J. Barth,et al. The design and application of upwind schemes on unstructured meshes , 1989 .
[32] John Thuburn,et al. Numerical advection schemes, cross‐isentropic random walks, and correlations between chemical species , 1997 .
[33] Lance M. Leslie,et al. An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .
[34] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[35] Henry M. Tufo,et al. High-order Galerkin methods for scalable global atmospheric models , 2007, Comput. Geosci..
[36] James Kent,et al. Dynamical core model intercomparison project: Tracer transport test cases , 2014 .
[37] Harold Ritchie,et al. Semi-Lagrangian advection on a Gaussian grid , 1987 .
[38] R. Easter,et al. Nonlinear Advection Algorithms Applied to Interrelated Tracers: Errors and Implications for Modeling Aerosol–Cloud Interactions , 2009 .
[39] A. Simmons,et al. Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .
[40] R. Nair. Diffusion Experiments with a Global Discontinuous Galerkin Shallow-Water Model , 2009 .
[41] Ramachandran D. Nair,et al. The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .
[42] Todd D. Ringler,et al. A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .
[43] Peter H. Lauritzen,et al. A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics , 2013 .
[44] Wen-Yih Sun,et al. Mass Correction Applied to Semi-Lagrangian Advection Scheme , 2004 .
[45] Kao-San Yeh,et al. A simple semi‐Lagrangian scheme for advection equations , 1996 .
[46] Takeshi Enomoto. Bicubic Interpolation with Spectral Derivatives , 2008 .
[47] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[48] R. Fadeev,et al. Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model , 2013 .
[49] Christiane Jablonowski,et al. Some considerations for high-order 'incremental remap'-based transport schemes: Edges, reconstructions, and area integration , 2013 .
[50] Mikhail A. Tolstykh,et al. Vorticity-divergence mass-conserving semi-Lagrangian shallow-water model using the reduced grid on the sphere , 2012, J. Comput. Phys..
[51] Janusz A. Pudykiewicz,et al. Preliminary results From a partial LRTAP model based on an existing meteorological forecast model , 1985 .
[52] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[53] John K. Dukowicz,et al. Incremental Remapping as a Transport/Advection Algorithm , 2000 .
[54] Amik St-Cyr,et al. Optimal limiters for the spectral element method. , 2013 .
[55] D. Durran. Numerical Methods for Fluid Dynamics , 2010 .
[56] John K. Dukowicz,et al. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .
[57] J. Verwer,et al. A positive finite-difference advection scheme , 1995 .
[58] Todd D. Ringler,et al. Voronoi Tessellations and Their Application to Climate and Global Modeling , 2011 .
[59] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[60] Mark A. Taylor,et al. A Non-oscillatory Advection Operator for the Compatible Spectral Element Method , 2009, ICCS.
[61] S. Osher,et al. Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .
[62] Louis J. Wicker,et al. Time-Splitting Methods for Elastic Models Using Forward Time Schemes , 2002 .
[63] William C. Skamarock,et al. Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration , 2011 .
[64] James Kent,et al. Downscale cascades in tracer transport test cases: an intercomparison of the dynamical cores in the Community Atmosphere Model CAM5 , 2012 .
[65] Shian-Jiann Lin,et al. Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..
[66] P. H. Lauritzena,et al. Evaluating advection / transport schemes using interrelated tracers , scatter plots and numerical mixing diagnostics , 2011 .
[67] Christoph Erath,et al. Integrating a scalable and effcient semi-Lagrangian multi-tracer transport scheme in HOMME , 2012, ICCS.
[68] Peter Andrew Bosler,et al. Particle Methods for Geophysical Flow on the Sphere. , 2013 .
[69] Christoph Erath,et al. On simplifying 'incremental remap'-based transport schemes , 2011, J. Comput. Phys..
[70] Peter H. Lauritzen,et al. A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid , 2011, J. Comput. Phys..
[71] P. Lauritzen,et al. Atmospheric Transport Schemes: Desirable Properties and a Semi-Lagrangian View on Finite-Volume Discretizations , 2011 .
[72] Mark A. Taylor,et al. CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..
[73] TufoHenry,et al. High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005 .
[74] Rodolfo Bermejo,et al. The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes , 1992 .
[75] Peter H. Lauritzen,et al. A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..
[76] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[77] F. Semazzi,et al. Efficient Conservative Global Transport Schemes for Climate and Atmospheric Chemistry Models , 2002 .
[78] A. Harten. On the symmetric form of systems of conservation laws with entropy , 1983 .
[79] Jack J. Dongarra,et al. High-performance high-resolution semi-Lagrangian tracer transport on a sphere , 2011, J. Comput. Phys..
[80] B. Vanleer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[81] Bin Wang,et al. Trajectory-Tracking Scheme in Lagrangian Form for Solving Linear Advection Problems: Interface Spatial Discretization , 2013 .
[82] P. Lauritzen. Numerical techniques for global atmospheric models , 2011 .
[83] Petros Koumoutsakos,et al. Vortex Methods: Theory and Practice , 2000 .
[84] H. Miura. An Upwind-Biased Conservative Advection Scheme for Spherical Hexagonal–Pentagonal Grids , 2007 .
[85] M. Prather. Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .
[86] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[87] Shian‐Jiann Lin. A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .
[88] H. Tufo,et al. Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core , 2009 .
[89] Christiane Jablonowski,et al. Geometrically Exact Conservative Remapping (GECoRe): Regular Latitude–Longitude and Cubed-Sphere Grids , 2009 .
[90] Mark A. Taylor,et al. A standard test case suite for two-dimensional linear transport on the sphere , 2012 .
[91] Peter H. Lauritzen,et al. A stability analysis of finite-volume advection schemes permitting long time steps , 2007 .
[92] Wolfgang Hiller,et al. Evolution of Small-Scale Filaments in an Adaptive Advection Model for Idealized Tracer Transport , 2000 .
[93] Mark A. Taylor,et al. A compatible and conservative spectral element method on unstructured grids , 2010, J. Comput. Phys..
[94] Michael J Prather,et al. Quantifying errors in trace species transport modeling , 2008, Proceedings of the National Academy of Sciences.
[95] Kevin Hamilton,et al. Explicit global simulation of the mesoscale spectrum of atmospheric motions , 2006 .
[96] Christoph Erath,et al. On Mass Conservation in High-Order High-Resolution Rigorous Remapping Schemes on the Sphere , 2013 .
[97] Todd D. Ringler,et al. A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations , 2008 .