A STANDARD TEST CASE SUITE FOR TWO-DIMENSIONAL LINEAR TRANSPORT ON THE SPHERE: RESULTS FROM A COLLECTION OF STATE-OF-THE-ART SCHEMES

Abstract. Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude–longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate–chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent. The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison.

[1]  Mark Ainsworth,et al.  Dispersive and Dissipative Behavior of the Spectral Element Method , 2009, SIAM J. Numer. Anal..

[2]  Clive Temperton,et al.  An Efficient Two‐Time‐Level Semi‐Lagrangian Semi‐Implicit Integration Scheme , 1987 .

[3]  Paul A. Ullrich,et al.  A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..

[4]  Peter H. Lauritzen,et al.  A Mass-Conservative Semi-Implicit Semi-Lagrangian Limited-Area Shallow-Water Model on the Sphere , 2006 .

[5]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[6]  Janusz A. Pudykiewicz On numerical solution of the shallow water equations with chemical reactions on icosahedral geodesic grid , 2011, J. Comput. Phys..

[7]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[8]  Katherine J. Evans,et al.  AMIP Simulation with the CAM4 Spectral Element Dynamical Core , 2013 .

[9]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[10]  R. T. Williams,et al.  Semi-Lagrangian Solutions to the Inviscid Burgers Equation , 1990 .

[11]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[12]  D. Durran Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .

[13]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[14]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[15]  J. Côté,et al.  Monotonic cascade interpolation for semi‐lagrangian advection , 1999 .

[16]  Bin Wang,et al.  Trajectory-Tracking Scheme in Lagrangian Form for Solving Linear Advection Problems: Preliminary Tests , 2012 .

[17]  Hirofumi Tomita,et al.  Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .

[18]  Mark A. Taylor,et al.  Optimization-based limiters for the spectral element method , 2014, J. Comput. Phys..

[19]  R. A. Plumb,et al.  Tracer interrelationships in the stratosphere , 2007 .

[20]  Stephen J. Thomas,et al.  The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation , 2005, J. Sci. Comput..

[21]  P. Lauritzen,et al.  Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics , 2012 .

[22]  Randall J. LeVeque,et al.  Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains , 2008, SIAM Rev..

[23]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[24]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[25]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[26]  Jean Côté,et al.  A Two-Time-Level Semi-Lagrangian Semi-implicit Scheme for Spectral Models , 1988 .

[27]  C. Jablonowski,et al.  Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .

[28]  Todd D. Ringler,et al.  Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations , 2011 .

[29]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[30]  Mark A. Taylor,et al.  High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005, Int. J. High Perform. Comput. Appl..

[31]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[32]  John Thuburn,et al.  Numerical advection schemes, cross‐isentropic random walks, and correlations between chemical species , 1997 .

[33]  Lance M. Leslie,et al.  An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .

[34]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[35]  Henry M. Tufo,et al.  High-order Galerkin methods for scalable global atmospheric models , 2007, Comput. Geosci..

[36]  James Kent,et al.  Dynamical core model intercomparison project: Tracer transport test cases , 2014 .

[37]  Harold Ritchie,et al.  Semi-Lagrangian advection on a Gaussian grid , 1987 .

[38]  R. Easter,et al.  Nonlinear Advection Algorithms Applied to Interrelated Tracers: Errors and Implications for Modeling Aerosol–Cloud Interactions , 2009 .

[39]  A. Simmons,et al.  Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .

[40]  R. Nair Diffusion Experiments with a Global Discontinuous Galerkin Shallow-Water Model , 2009 .

[41]  Ramachandran D. Nair,et al.  The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .

[42]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[43]  Peter H. Lauritzen,et al.  A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics , 2013 .

[44]  Wen-Yih Sun,et al.  Mass Correction Applied to Semi-Lagrangian Advection Scheme , 2004 .

[45]  Kao-San Yeh,et al.  A simple semi‐Lagrangian scheme for advection equations , 1996 .

[46]  Takeshi Enomoto Bicubic Interpolation with Spectral Derivatives , 2008 .

[47]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[48]  R. Fadeev,et al.  Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model , 2013 .

[49]  Christiane Jablonowski,et al.  Some considerations for high-order 'incremental remap'-based transport schemes: Edges, reconstructions, and area integration , 2013 .

[50]  Mikhail A. Tolstykh,et al.  Vorticity-divergence mass-conserving semi-Lagrangian shallow-water model using the reduced grid on the sphere , 2012, J. Comput. Phys..

[51]  Janusz A. Pudykiewicz,et al.  Preliminary results From a partial LRTAP model based on an existing meteorological forecast model , 1985 .

[52]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[53]  John K. Dukowicz,et al.  Incremental Remapping as a Transport/Advection Algorithm , 2000 .

[54]  Amik St-Cyr,et al.  Optimal limiters for the spectral element method. , 2013 .

[55]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[56]  John K. Dukowicz,et al.  Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .

[57]  J. Verwer,et al.  A positive finite-difference advection scheme , 1995 .

[58]  Todd D. Ringler,et al.  Voronoi Tessellations and Their Application to Climate and Global Modeling , 2011 .

[59]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[60]  Mark A. Taylor,et al.  A Non-oscillatory Advection Operator for the Compatible Spectral Element Method , 2009, ICCS.

[61]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[62]  Louis J. Wicker,et al.  Time-Splitting Methods for Elastic Models Using Forward Time Schemes , 2002 .

[63]  William C. Skamarock,et al.  Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration , 2011 .

[64]  James Kent,et al.  Downscale cascades in tracer transport test cases: an intercomparison of the dynamical cores in the Community Atmosphere Model CAM5 , 2012 .

[65]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[66]  P. H. Lauritzena,et al.  Evaluating advection / transport schemes using interrelated tracers , scatter plots and numerical mixing diagnostics , 2011 .

[67]  Christoph Erath,et al.  Integrating a scalable and effcient semi-Lagrangian multi-tracer transport scheme in HOMME , 2012, ICCS.

[68]  Peter Andrew Bosler,et al.  Particle Methods for Geophysical Flow on the Sphere. , 2013 .

[69]  Christoph Erath,et al.  On simplifying 'incremental remap'-based transport schemes , 2011, J. Comput. Phys..

[70]  Peter H. Lauritzen,et al.  A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid , 2011, J. Comput. Phys..

[71]  P. Lauritzen,et al.  Atmospheric Transport Schemes: Desirable Properties and a Semi-Lagrangian View on Finite-Volume Discretizations , 2011 .

[72]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[73]  TufoHenry,et al.  High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005 .

[74]  Rodolfo Bermejo,et al.  The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes , 1992 .

[75]  Peter H. Lauritzen,et al.  A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..

[76]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[77]  F. Semazzi,et al.  Efficient Conservative Global Transport Schemes for Climate and Atmospheric Chemistry Models , 2002 .

[78]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[79]  Jack J. Dongarra,et al.  High-performance high-resolution semi-Lagrangian tracer transport on a sphere , 2011, J. Comput. Phys..

[80]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[81]  Bin Wang,et al.  Trajectory-Tracking Scheme in Lagrangian Form for Solving Linear Advection Problems: Interface Spatial Discretization , 2013 .

[82]  P. Lauritzen Numerical techniques for global atmospheric models , 2011 .

[83]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[84]  H. Miura An Upwind-Biased Conservative Advection Scheme for Spherical Hexagonal–Pentagonal Grids , 2007 .

[85]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[86]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[87]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[88]  H. Tufo,et al.  Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core , 2009 .

[89]  Christiane Jablonowski,et al.  Geometrically Exact Conservative Remapping (GECoRe): Regular Latitude–Longitude and Cubed-Sphere Grids , 2009 .

[90]  Mark A. Taylor,et al.  A standard test case suite for two-dimensional linear transport on the sphere , 2012 .

[91]  Peter H. Lauritzen,et al.  A stability analysis of finite-volume advection schemes permitting long time steps , 2007 .

[92]  Wolfgang Hiller,et al.  Evolution of Small-Scale Filaments in an Adaptive Advection Model for Idealized Tracer Transport , 2000 .

[93]  Mark A. Taylor,et al.  A compatible and conservative spectral element method on unstructured grids , 2010, J. Comput. Phys..

[94]  Michael J Prather,et al.  Quantifying errors in trace species transport modeling , 2008, Proceedings of the National Academy of Sciences.

[95]  Kevin Hamilton,et al.  Explicit global simulation of the mesoscale spectrum of atmospheric motions , 2006 .

[96]  Christoph Erath,et al.  On Mass Conservation in High-Order High-Resolution Rigorous Remapping Schemes on the Sphere , 2013 .

[97]  Todd D. Ringler,et al.  A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations , 2008 .