Damage Detection in Smart Composite Plates

In this chapter, a damage detection approach for a smart composite structure is presented. A brief background on smart structures is provided in Sect. 5.1. Smart structural systems have gained importance in recent years and have found applications in aerospace, automotive, and space applications [1, 2, 3, 4]. A structure can be made smart by introducing sensors, actuators, and information processing algorithms.

[1]  Hans Irschik,et al.  A review on static and dynamic shape control of structures by piezoelectric actuation , 2002 .

[2]  Ning Hu,et al.  Identification of Delaminations in Composite Laminates , 2006 .

[3]  Anindya Ghoshal,et al.  Experimental Investigation of Damage Detection in Composite Material Structures Using a Laser Vibrometer and Piezoelectric Actuators , 2003 .

[4]  Gangbing Song,et al.  Experimental Damage Identification of Carbon/Epoxy Composite Beams Using Curvature Mode Shapes , 2004 .

[5]  Patrick E. Johnson,et al.  Characterization of Matrix Crack-Induced Laminate Failure—Part I: Experiments , 2001 .

[6]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[7]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[8]  Michael J. Reece,et al.  Degradation of the d33 piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading , 2001 .

[9]  Ranjan Ganguli,et al.  Shape and vibration control of a smart composite plate with matrix cracks , 2009 .

[10]  Jack R. Vinson,et al.  Adhesive Layer Effects in Surface-Mounted Piezoelectric Actuators , 2002 .

[11]  Victor Giurgiutiu,et al.  Damage Detection in Thin Plates and Aerospace Structures with the Electro-Mechanical Impedance Method , 2005 .

[12]  H. Shinagawa,et al.  Functional analyses of the domain structure in the Holliday junction binding protein RuvA. , 1998, Structure.

[13]  Anindya Ghoshal,et al.  A Structural Neural System for Real-time Health Monitoring of Composite Materials , 2008 .

[14]  F. Chang,et al.  Matrix Cracking Effect on Delamination Growth in Composite Laminates Induced by a Spherical Indenter , 1994 .

[15]  Bart Peeters,et al.  International Research Projects on Structural Health Monitoring: An Overview , 2003 .

[16]  Dimitris A. Saravanos,et al.  High-frequency Dispersion Characteristics of Smart Delaminated Composite Beams , 2009 .

[17]  Inderjit Chopra,et al.  Review of State of Art of Smart Structures and Integrated Systems , 2002 .

[18]  Enrico Zio,et al.  Monte Carlo simulation for model-based fault diagnosis in dynamic systems , 2009, Reliab. Eng. Syst. Saf..

[19]  Jeong-Beom Ihn,et al.  Pitch-catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures , 2008 .

[20]  Wilfried B. Krätzig,et al.  Compliance-based structural damage measure and its sensitivity to uncertainties , 2005 .

[21]  Jiann-Shiun Lew Reduction of uncertainty effect on damage identification using feedback control , 2008 .

[22]  Ranjan Ganguli,et al.  Composite material and piezoelectric coefficient uncertainty effects on structural health monitoring using feedback control gains as damage indicators , 2011 .

[23]  Sang-Bo Han,et al.  Properties of interfacial adhesion for vibration controllability of composite materials as smart structures , 2000 .

[24]  E. Peter Carden,et al.  Vibration Based Condition Monitoring: A Review , 2004 .

[25]  J. N. Reddy,et al.  A finite-element model for piezoelectric composite laminates , 1997 .

[26]  Hong Hao,et al.  Vibration based damage detection using artificial neural network with consideration of uncertainties , 2007 .

[27]  Rafael Gallego,et al.  Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics , 2009 .

[28]  M. Chandrashekhar,et al.  Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic , 2009 .

[29]  W. P. De Wilde,et al.  The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behaviour of composite materials structural components , 1995 .

[30]  Robert G. Loewy,et al.  REVIEW ARTICLE: Recent developments in smart structures with aeronautical applications , 1997 .

[31]  Ranjan Ganguli,et al.  Structural Damage Detection Using Modal Curvature and Fuzzy Logic , 2009 .

[32]  Peter Gudmundson,et al.  Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks , 1997 .

[33]  Zhuo Xu,et al.  Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method , 2009 .

[34]  Zhongqing Su,et al.  Fundamental Lamb Mode-based Delamination Detection for CF/EP Composite Laminates Using Distributed Piezoelectrics , 2004 .

[35]  Alison B. Flatau,et al.  Review Paper: Health Monitoring of Civil Infrastructure , 2003 .

[36]  Ranjan Ganguli,et al.  On the effect of matrix cracks in composite helicopter rotor blade , 2005 .

[37]  José Herskovits,et al.  Estimation of piezoelastic and viscoelastic properties in laminated structures , 2009 .

[38]  Chen Lin,et al.  Monte carlo finite element method of structure reliability analysis , 1993 .

[39]  Keith Worden,et al.  An Overview of Intelligent Fault Detection in Systems and Structures , 2004 .

[40]  J.-F. Maire,et al.  Efficient structural computations with parameters uncertainty for composite applications , 2009 .

[41]  S. Hurlebaus,et al.  Smart structure dynamics , 2006 .

[42]  Giuliano Allegri,et al.  Stochastic analysis of the vibrations of an uncertain composite truss for space applications , 2006 .

[43]  Fabrizio Ricci,et al.  A Conceptual Structural Health Monitoring System based on Vibration and Wave Propagation , 2005 .

[44]  Teng K. Ooi,et al.  Built-in Sensor Network for Structural Health Monitoring of Composite Structure , 2007 .

[45]  Carlos E. S. Cesnik,et al.  3-D Elasticity-based Modeling of Anisotropic Piezocomposite Transducers for Guided Wave Structural Health Monitoring , 2006 .

[46]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[47]  Sankaran Mahadevan,et al.  Uncertainty Quantification in Structural Health Monitoring , 2009 .

[48]  K. Chandrashekhara,et al.  Active Vibration Control of Laminated Composite Plates Using Piezoelectric Devices: A Finite Element Approach , 1993 .

[49]  Chyanbin Hwu,et al.  Electromechanical analysis of defects in piezoelectric materials , 1996 .

[50]  J. Nosek,et al.  Characterization of advanced piezoelectric materials in the wide temperature range , 2003 .

[51]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[52]  Patrick E. Johnson,et al.  Characterization of Matrix Crack-Induced Laminate Failure—Part II: Analysis and Verifications , 2001 .

[53]  M. Chandrashekhar,et al.  Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation , 2009 .

[54]  D. Yadav,et al.  Stochastic Finite Element Buckling Analysis of Laminated Plates With Circular Cutout Under Uniaxial Compression , 2007 .

[55]  Ranjan Ganguli,et al.  Genetic fuzzy system for damage detection in beams and helicopter rotor blades , 2003 .

[56]  Ranjan Ganguli,et al.  Aeroelastic Response of Composite Helicopter Rotor with Random Material Properties , 2008 .

[57]  Jiong Tang,et al.  Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry , 2008 .