Efficient algorithms for path system problems and applications to alternating and time-space complexity classes

Let SPS(f(n)) denote the solvable path system problem for path systems of bandwidth f(n) and SPS (f(n)) the corresponding problem for monotone systems. Let DTISP (poly, f(n)) denote the polynomial time and simultaneous f(n) space class and SC = UkDTISP (poly, logkn). Let ASPACE (f(n)) denote the sets accepted by f(n) space bounded alternating TMs and ASPACE (f(n)) the corresponding one-way TM family. Then, for "well-behaved" functions fεO(n)-o(log n), (1) SPS (f(n)) is ≤log-complete for DTISP (poly, f(n)), (2) {SPS(f(n)k)}k≥1 is ≤log-complete for ASPACE (logf(n)), (3) {SPS (f(n)k)}k≥1 is ≤log-complete for ASPACE (log f(n)), (4) SPS(f(n)) ε DSPACE(f(n) × log n), (5) ASPACE(log f(n)) ⊆ UkDSPACE(f(n)k), and (6) SC = CLOSURE ≤log(ASPACE(log log n)).

[1]  Ivan Hal Sudborough,et al.  On Eliminating Nondeterminism From Turing Machines Which Use Less Than Logarithmic Worktape Space , 1979, ICALP.

[2]  Ivan Hal Sudborough,et al.  On Eliminating Nondeterminism from Turing Machines which Use less than Logarithm Worktape Space , 1982, Theor. Comput. Sci..

[3]  Nicholas Pippenger,et al.  On Simultaneous Resource Bounds (Preliminary Version) , 1979, FOCS 1979.

[4]  Robert E. Tarjan,et al.  The pebbling problem is complete in polynomial space , 1979, SIAM J. Comput..

[5]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[6]  Stephen A. Cook,et al.  An Observation on Time-Storage Trade Off , 1974, J. Comput. Syst. Sci..

[7]  Neil Immerman,et al.  Length of predicate calculus formulas as a new complexity measure , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[8]  Stephen A. Cook,et al.  An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..

[9]  Albert R. Meyer,et al.  On time-space classes and their relation to the theory of real addition , 1978, STOC '78.

[10]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[11]  Sartaj Sahni,et al.  Computationally Related Problems , 1974, SIAM J. Comput..

[12]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[13]  Richard Edwin Stearns,et al.  Hierarchies of memory limited computations , 1965, SWCT.

[14]  Michael J. Fischer,et al.  Relations Among Complexity Measures , 1979, JACM.

[15]  Stephen A. Cook Path systems and language recognition , 1970, STOC '70.

[16]  Burkhard Monien Bounding the Bandwidth of NP-Complete Problems , 1980, WG.

[17]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[18]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[19]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[20]  James B. Saxe,et al.  Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.

[21]  Stephen A. Cook,et al.  Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..

[22]  A. H. Sherman,et al.  Comparative Analysis of the Cuthill–McKee and the Reverse Cuthill–McKee Ordering Algorithms for Sparse Matrices , 1976 .

[23]  Andrzej Lingas A PSPACE Complete Problem Related to a Pebble Game , 1978, ICALP.

[24]  Ivan Hal Sudborough The Complexity of Path Problems in Graphs and Path Systems of Bounded Bandwidth , 1980, WG.

[25]  Stephen A. Cook,et al.  Storage requirements for deterministic / polynomial time recognizable languages , 1974, STOC '74.

[26]  Stephen A. Cook,et al.  Deterministic CFL's are accepted simultaneously in polynomial time and log squared space , 1979, STOC.

[27]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .