Fixed Point Analysis of Douglas-Rachford Splitting for Ptychography and Phase Retrieval

Douglas-Rachford Splitting (DRS) methods based on the proximal point algorithms for the Poisson and Gaussian log-likelihood functions are proposed for ptychography and phase retrieval. Fixed point analysis shows that the DRS iterated sequences are always bounded explicitly in terms of the step size and that the fixed points are attracting if and only if the fixed points are regular solutions. This alleviates two major drawbacks of the classical Douglas-Rachford algorithm: slow convergence when the feasibility problem is consistent and divergent behavior when the feasibility problem is inconsistent. Fixed point analysis also leads to a simple, explicit expression for the optimal step size in terms of the spectral gap of an underlying matrix. When applied to the challenging problem of blind ptychography, which seeks to recover both the object and the probe simultaneously, Alternating Minimization with the DRS inner loops, even with a far from optimal step size, converges geometrically under the nearly minimum conditions established in the uniqueness theory.

[1]  Grover A. Swartzlander,et al.  Randomized apertures: high resolution imaging in far field. , 2017, Optics express.

[2]  Chao Yang,et al.  Alternating direction methods for classical and ptychographic phase retrieval , 2012 .

[3]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[4]  Heinz H. Bauschke,et al.  The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle , 2013, J. Approx. Theory.

[5]  Guoan Zheng,et al.  Embedded pupil function recovery for Fourier ptychographic microscopy. , 2014, Optics express.

[6]  Wenjing Liao,et al.  Fourier phasing with phase-uncertain mask , 2012, 1212.3858.

[7]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[8]  Guoyin Li,et al.  Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems , 2014, Math. Program..

[9]  Shoham Sabach,et al.  Proximal Heterogeneous Block Implicit-Explicit Method and Application to Blind Ptychographic Diffraction Imaging , 2015, SIAM J. Imaging Sci..

[10]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[11]  Peter G. Casazza,et al.  Phase retrieval , 2015, SPIE Optical Engineering + Applications.

[12]  Albert Fannjiang,et al.  Raster Grid Pathology and the Cure , 2018, Multiscale Model. Simul..

[13]  Tom Peterka,et al.  Parallel ptychographic reconstruction. , 2014, Optics express.

[14]  Pengwen Chen,et al.  Coded aperture ptychography: uniqueness and reconstruction , 2017, 1709.01984.

[15]  Qian Chen,et al.  Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. , 2016, Optics express.

[16]  Albert Fannjiang,et al.  Blind Ptychography by Douglas-Rachford Splitting , 2018, ArXiv.

[17]  J. Rodenburg,et al.  Noise models for low counting rate coherent diffraction imaging. , 2012, Optics express.

[18]  P. Thibault X-ray ptychography , 2011 .

[19]  Tie Zhou,et al.  On relaxed averaged alternating reflections (RAAR) algorithm for phase retrieval with structured illumination , 2016, 1607.02138.

[20]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[21]  Qionghai Dai,et al.  Fourier ptychographic microscopy using a generalized Anscombe transform approximation of the mixed Poisson-Gaussian likelihood. , 2017, Optics express.

[22]  James R. Fienup,et al.  Phase-retrieval stagnation problems and solutions , 1986 .

[23]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[24]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[25]  P. Thibault,et al.  Maximum-likelihood refinement for coherent diffractive imaging , 2012 .

[26]  Renjie Zhou,et al.  Digital micromirror device-based laser-illumination Fourier ptychographic microscopy. , 2015, Optics express.

[27]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[28]  Pablo Enfedaque,et al.  Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers , 2018, SIAM J. Imaging Sci..

[29]  Talita Perciano,et al.  SHARP: a distributed, GPU-based ptychographic solver , 2016, 1602.01448.

[30]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[31]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[32]  O. Bunk,et al.  Influence of the overlap parameter on the convergence of the ptychographical iterative engine. , 2008, Ultramicroscopy.

[33]  F. Zhang,et al.  X-ray ptychography using randomized zone plates. , 2018, Optics express.

[34]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[35]  Qionghai Dai,et al.  Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient , 2016, Scientific Reports.

[36]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[37]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[38]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[39]  J. Rodenburg,et al.  Soft X-ray spectromicroscopy using ptychography with randomly phased illumination , 2013, Nature Communications.

[40]  Albert Fannjiang,et al.  Absolute uniqueness of phase retrieval with random illumination , 2011, ArXiv.

[41]  Albert Fannjiang,et al.  Blind Ptychography: Uniqueness and Ambiguities. , 2018 .

[42]  K. Nugent Coherent methods in the X-ray sciences , 2009, 0908.3064.

[43]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Laura Waller,et al.  Experimental robustness of Fourier Ptychography phase retrieval algorithms , 2015, Optics express.

[45]  A. Fannjiang,et al.  Phase Retrieval with One or Two Diffraction Patterns by Alternating Projections with the Null Initialization , 2015, 1510.07379.

[46]  D. Russell Luke,et al.  Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..

[47]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[48]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[49]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  H P Urbach,et al.  Model-independent noise-robust extension of ptychography. , 2018, Optics express.

[51]  H M L Faulkner,et al.  Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy. , 2005, Ultramicroscopy.

[52]  Franz Pfeiffer,et al.  Near-field ptychography: phase retrieval for inline holography using a structured illumination , 2013, Scientific Reports.

[53]  D. R. Luke Relaxed Averaged Alternating Reflections for Diffraction Imaging , 2004, math/0405208.

[54]  Laura Waller,et al.  Computational illumination for high-speed in vitro Fourier ptychographic microscopy , 2015, 1506.04274.

[55]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[56]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.