Nonrepetitive Sequences on Arithmetic Progressions

A sequence $S=s_{1}s_{2}..._{n}$ is \emph{nonrepetitive} if no two adjacent blocks of $S$ are identical. In 1906 Thue proved that there exist arbitrarily long nonrepetitive sequences over 3-element set of symbols. We study a generalization of nonrepetitive sequences involving arithmetic progressions. We prove that for every $k\geqslant 1$ and every $c\geqslant 1$ there exist arbitrarily long sequences over at most $(1+\frac{1}{c})k+18k^{c/c+1}$ symbols whose subsequences indexed by arithmetic progressions with common differences from the set $\{1,2,...,k\}$ are nonrepetitive. This improves a previous bound obtained in \cite{Grytczuk Rainbow}. Our approach is based on a technique introduced recently in \cite{GrytczukKozikMicek}, which was originally inspired by a constructive proof of the Lov\'{a}sz Local Lemma due to Moser and Tardos \cite{MoserTardos}. We also discuss some related problems that can be successfully attacked by this method.

[1]  J. Berstel Axel Thue''s papers on repetitions in words: a translation. In: Publications du LaCIM, vol. 20. U , 1992 .

[2]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[3]  James D. Currie,et al.  Non-Repetitive Tilings , 2002, Electron. J. Comb..

[4]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[5]  Jaroslaw Grytczuk,et al.  New approach to nonrepetitive sequences , 2011, Random Struct. Algorithms.

[6]  Arturo Carpi Multidimensional Unrepetitive Configurations , 1988, Theor. Comput. Sci..

[7]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[8]  Jaroslaw Grytczuk,et al.  Thue type problems for graphs, points, and numbers , 2008, Discret. Math..

[9]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[10]  James D. Currie,et al.  Pattern avoidance: themes and variations , 2005, Theor. Comput. Sci..

[11]  Jaroslaw Grytczuk,et al.  Thue-like Sequences and Rainbow Arithmetic Progressions , 2002, Electron. J. Comb..

[12]  Yuval Peres,et al.  Two Erdős problems on lacunary sequences: Chromatic number and Diophantine approximation , 2010 .

[13]  Jean Berstel,et al.  Axel Thue's work on repetitions in words , 1992 .

[14]  Zsolt Tuza,et al.  Distance Graphs with Finite Chromatic Number , 2002, J. Comb. Theory, Ser. B.

[15]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[16]  Jaroslaw Grytczuk,et al.  Nonrepetitive Colorings of Graphs - A Survey , 2007, Int. J. Math. Math. Sci..

[17]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[18]  Y. Katznelson,et al.  Chromatic Numbers of Cayley Graphs on Z and Recurrence , 2001, Comb..