Uncertainty relations with the generalized Wigner–Yanase–Dyson skew information

The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg’s uncertainty relation and Schrödinger’s uncertainty relation. We introduce the generalized Wigner–Yanase–Dyson correlation and the related quantities. Various properties of them are discussed. Finally, we establish several generalizations of uncertainty relation expressed in terms of the generalized Wigner–Yanase–Dyson skew information.

[1]  Kenjiro Yanagi,et al.  Schrödinger uncertainty relation, Wigner–Yanase–Dyson skew information and metric adjusted correlation measure , 2010, 1010.0392.

[2]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics , 2011 .

[3]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .

[4]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[5]  Zheng-Li Chen,et al.  Two generalized Wigner–Yanase skew information and their uncertainty relations , 2016, Quantum Inf. Process..

[6]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Long The General Quantum Interference Principle and the Duality Computer , 2005, quant-ph/0512120.

[8]  Ingrid Rotter,et al.  Phase lapses in open quantum systems and the non-Hermitian Hamilton operator , 2009 .

[9]  A. Matzkin Weak measurements in non-Hermitian systems , 2012 .

[10]  Kenjiro Yanagi,et al.  Uncertainty relation on Wigner-Yanase-Dyson skew information , 2009, 1003.3907.

[11]  Qian Li,et al.  A generalization of Schrödinger’s uncertainty relation described by the Wigner–Yanase skew information , 2015, Quantum Inf. Process..

[12]  Yan-Ni Dou,et al.  Generalizations of the Heisenberg and Schrödinger uncertainty relations , 2013 .

[13]  Dorje C Brody,et al.  Faster than Hermitian quantum mechanics. , 2007, Physical review letters.

[14]  S. Luo Heisenberg uncertainty relation for mixed states , 2005 .

[15]  HuaiXin Cao,et al.  Operational properties and matrix representations of quantum measures , 2011 .

[16]  L. Y. Gong,et al.  Signature of topological quantum phase transitions via Wigner-Yanase skew information , 2014 .

[17]  Bin Chen,et al.  Variance-based uncertainty relations for incompatible observables , 2016, Quantum Inf. Process..

[18]  Igor Jex,et al.  Generalized quantum XOR-gate for quantum teleportation and state purification in arbitrary dimensional Hilbert spaces , 2000 .

[19]  Chul Ki Ko,et al.  Uncertainty relation associated with a monotone pair skew information , 2011 .

[20]  김준기,et al.  Trace inequalities on a generalized Wigner–Yanase skew information , 2009, 0902.4141.

[21]  Ingrid Rotter,et al.  A non-Hermitian Hamilton operator and the physics of open quantum systems , 2009 .

[22]  Sanjib Dey,et al.  Hermitian versus non-Hermitian representations for minimal length uncertainty relations , 2013, 1302.4571.

[23]  H. Cao,et al.  Existence and construction of a quantum channel with given inputs and outputs , 2012 .

[24]  Kenjiro Yanagi,et al.  Wigner-Yanase-Dyson skew information and uncertainty relation , 2010 .

[25]  Li-Li Liang,et al.  A Generalized Uncertainty Relation , 2015 .

[26]  Shigeru Furuichi,et al.  Schrödinger uncertainty relation with Wigner-Yanase skew information , 2010, 1005.2655.

[27]  Long Gui-lu,et al.  General Quantum Interference Principle and Duality Computer , 2006 .

[28]  Yan-Ni Dou,et al.  Note on the Wigner-Yanase-Dyson Skew Information , 2014 .

[29]  L. Y. Gong,et al.  Universal role of quantum uncertainty in Anderson metal–insulator transition , 2016 .

[30]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[31]  Alexey E. Rastegin,et al.  Entropic uncertainty relations and quasi-Hermitian operators , 2012 .

[32]  Qiang Zhang,et al.  On skew information , 2004, IEEE Transactions on Information Theory.

[33]  Bin Chen,et al.  Sum uncertainty relations based on Wigner–Yanase skew information , 2016, Quantum Inf. Process..

[34]  Jin-Long Wei,et al.  Examining quantum correlations in the XY spin chain by local quantum uncertainty , 2015, Quantum Inf. Process..