Persistence in seasonally forced epidemiological models

In this paper we address the persistence of a class of seasonally forced epidemiological models. We use an abstract theorem about persistence by Fonda. Five different examples of application are given.

[1]  Nicolas Bacaër,et al.  The epidemic threshold of vector-borne diseases with seasonality , 2006, Journal of mathematical biology.

[2]  Alessandro Fonda,et al.  Uniformly persistent semidynamical systems , 1988 .

[3]  Shigui Ruan,et al.  Uniform persistence and flows near a closed positively invariant set , 1994 .

[4]  H. Hethcote A Thousand and One Epidemic Models , 1994 .

[5]  H L Smith,et al.  Subharmonic bifurcation in an S-I-R epidemic model , 1983, Journal of mathematical biology.

[6]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[7]  Xiao-Qiang Zhao,et al.  A periodic epidemic model in a patchy environment , 2007 .

[8]  Xiao-Qiang Zhao,et al.  A Tuberculosis Model with Seasonality , 2010, Bulletin of mathematical biology.

[9]  H L Smith,et al.  Multiple stable subharmonics for a periodic epidemic model , 1983, Journal of mathematical biology.

[10]  A. Margheri,et al.  Some examples of persistence in epidemiological models , 2003, Journal of mathematical biology.

[11]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[12]  R. B. Kellogg,et al.  On a differential equation arising from compartmental analysis , 1978 .

[13]  T. Gedeon,et al.  Hantavirus Transmission in Sylvan and Peridomestic Environments , 2010, Bulletin of mathematical biology.

[14]  Xiao-Qiang Zhao,et al.  Chain Transitivity, Attractivity, and Strong Repellors for Semidynamical Systems , 2001 .

[15]  Nicolas Bacaër,et al.  Genealogy with seasonality, the basic reproduction number, and the influenza pandemic , 2011, Journal of mathematical biology.

[16]  Sebastian J. Schreiber,et al.  Robust permanence for interacting structured populations , 2010, 1005.4146.

[17]  Sebastian J. Schreiber,et al.  Criteria for Cr Robust Permanence , 2000 .

[18]  H. Hethcote Asymptotic behavior in a deterministic epidemic model. , 1973, Bulletin of mathematical biology.

[19]  H L Smith,et al.  On periodic solutions of a delay integral equation modelling epidemics , 1977, Journal of mathematical biology.

[20]  Kenneth L. Cooke,et al.  A periodicity threshold theorem for epidemics and population growth , 1976 .

[21]  Toshikazu Kuniya,et al.  Global dynamics of a class of SEIRS epidemic models in a periodic environment , 2010 .

[22]  Josef Hofbauer,et al.  Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations , 2003, SIAM J. Math. Anal..

[23]  Paul L. Salceanu,et al.  Persistence in a discrete-time, stage-structured epidemic model , 2010 .

[24]  Simon A. Levin,et al.  Frontiers in Mathematical Biology , 1995 .

[25]  Xiao-Qiang Zhao,et al.  A Climate-Based Malaria Transmission Model with Structured Vector Population , 2010, SIAM J. Appl. Math..

[26]  R. D. Nussbaum PERIODIC SOLUTIONS OF SOME INTEGRAL EQUATIONS FROM THE THEORY OF EPIDEMICS , 1977 .

[27]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[28]  Rachid Ouifki,et al.  Modeling the joint epidemics of TB and HIV in a South African township , 2008, Journal of mathematical biology.

[29]  Nicolas Bacaër,et al.  Growth rate and basic reproduction number for population models with a simple periodic factor. , 2007, Mathematical biosciences.

[30]  Xiao-Qiang Zhao,et al.  Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments , 2008 .

[31]  Roger D. Nussbaum,et al.  A Periodicity Threshold Theorem for Some Nonlinear Integral Equations , 1978 .

[32]  H R Thieme,et al.  Uniform persistence and permanence for non-autonomous semiflows in population biology. , 2000, Mathematical biosciences.

[33]  Nicolas Bacaër Approximation of the Basic Reproduction Number R0 for Vector-Borne Diseases with a Periodic Vector Population , 2007, Bulletin of mathematical biology.