Hunting for monolayer boron nitride: optical and Raman signatures.
暂无分享,去创建一个
Takashi Taniguchi | Kenji Watanabe | Kostya S Novoselov | Andre K Geim | K. Novoselov | Kenji Watanabe | T. Taniguchi | R. Nair | L. Britnell | R. Gorbachev | R. Jalil | B. Belle | SUPARNA DUTTASINHA | E. Hill | P. Blake | Ibtsam Riaz | Rahul R Nair | Roman V Gorbachev | Rashid Jalil | Liam Britnell | I. Riaz | Ernie W Hill | Branson D Belle | Peter Blake
[1] A. H. MacDonald,et al. Bose–Einstein condensation of excitons in bilayer electron systems , 2004, Nature.
[2] K. Novoselov,et al. Raman Fingerprint of Charged Impurities in Graphene , 2007, 0709.2566.
[3] Takashi Taniguchi,et al. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent , 2007 .
[4] Stefano Borini,et al. Assessment of graphene quality by quantitative optical contrast analysis , 2009 .
[5] Takashi Taniguchi,et al. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.
[6] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[7] A. Neto,et al. Making graphene visible , 2007, Applied Physics Letters.
[8] Andre K. Geim,et al. Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[9] Jun Lou,et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.
[10] Martin N. Rossor,et al. Advanced online publication. , 2005, Nature structural biology.
[11] Jannik C. Meyer,et al. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. , 2009, Nano letters.
[12] Andre K. Geim,et al. Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.
[13] G. Westheimer. Optimal Magnification in Visual Microscopy , 1972 .
[14] Changgu Lee,et al. Frictional Characteristics of Atomically Thin Sheets , 2010, Science.
[15] K. Novoselov,et al. Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.
[16] H. Min,et al. Room-temperature superfluidity in graphene bilayers , 2008, 0802.3462.
[17] Alicja Bachmatiuk,et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. , 2010, ACS nano.
[18] W. Bacsa,et al. Bilayer interference enhanced Raman spectroscopy , 1992 .
[19] Dmitri Golberg,et al. Boron nitride nanotubes and nanosheets. , 2010, ACS nano.
[20] K. Novoselov,et al. Effect of a high-kappa environment on charge carrier mobility in graphene. , 2008, Physical review letters.
[21] Z. Zhang,et al. Crystal growth. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[22] S. Reich,et al. Raman spectroscopy of single-wall boron nitride nanotubes. , 2006, Nano letters.
[23] N. Marzari,et al. Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.
[24] K. Shepard,et al. Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.
[25] Kenji Watanabe,et al. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets , 2008 .
[26] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .