Hunting for monolayer boron nitride: optical and Raman signatures.

We describe the identification of single- and few- layer boron nitride. Its optical contrast is much smaller than that of graphene but even monolayers are discernable by optimizing viewing conditions. Raman spectroscopy can be used to confirm BN monolayers. They exhibit an upshift in the fundamental Raman mode by up to 4 cm-1. The number of layers in thicker crystals can be counted by exploiting an integer-step increase in the Raman intensity and optical contrast.

[1]  A. H. MacDonald,et al.  Bose–Einstein condensation of excitons in bilayer electron systems , 2004, Nature.

[2]  K. Novoselov,et al.  Raman Fingerprint of Charged Impurities in Graphene , 2007, 0709.2566.

[3]  Takashi Taniguchi,et al.  Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent , 2007 .

[4]  Stefano Borini,et al.  Assessment of graphene quality by quantitative optical contrast analysis , 2009 .

[5]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[6]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[7]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[8]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[10]  Martin N. Rossor,et al.  Advanced online publication. , 2005, Nature structural biology.

[11]  Jannik C. Meyer,et al.  Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. , 2009, Nano letters.

[12]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[13]  G. Westheimer Optimal Magnification in Visual Microscopy , 1972 .

[14]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[15]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[16]  H. Min,et al.  Room-temperature superfluidity in graphene bilayers , 2008, 0802.3462.

[17]  Alicja Bachmatiuk,et al.  Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. , 2010, ACS nano.

[18]  W. Bacsa,et al.  Bilayer interference enhanced Raman spectroscopy , 1992 .

[19]  Dmitri Golberg,et al.  Boron nitride nanotubes and nanosheets. , 2010, ACS nano.

[20]  K. Novoselov,et al.  Effect of a high-kappa environment on charge carrier mobility in graphene. , 2008, Physical review letters.

[21]  Z. Zhang,et al.  Crystal growth. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Reich,et al.  Raman spectroscopy of single-wall boron nitride nanotubes. , 2006, Nano letters.

[23]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[24]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[25]  Kenji Watanabe,et al.  Structure of chemically derived mono- and few-atomic-layer boron nitride sheets , 2008 .

[26]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .