Unc 51–like autophagy-activating kinase (ULK1) mediates clearance of free α-globin in β-thalassemia

Erythroid maturation is coordinated to maximize the production of hemoglobin A heterotetramers (α2β2) and minimize the accumulation of potentially toxic free α- or β-globin subunits. In β-thalassemia, mutations in the β-globin gene cause a build-up of free α-globin, which forms intracellular precipitates that impair erythroid cell maturation and viability. Protein quality-control systems mitigate β-thalassemia pathophysiology by degrading toxic free α-globin. We show that loss of the Unc 51–like autophagy-activating kinase gene Ulk1 in β-thalassemic mice reduces autophagic clearance of α-globin in red cell precursors and exacerbates disease phenotypes, whereas inactivation of the canonical autophagy gene Atg5 has minimal effects. Systemic treatment with rapamycin to inhibit the ULK1 inhibitor mTORC1 reduces α-globin precipitates and lessens pathologies in β-thalassemic mice, but not in those lacking Ulk1. Similarly, rapamycin reduces free α-globin accumulation in erythroblasts derived from β-thalassemic patient CD34+ hematopoietic progenitors. Our findings identify a new, drug-regulatable pathway for ameliorating β-thalassemia. One Sentence Summary Rapamycin alleviates β-thalassemia by stimulating ULK1-dependent autophagy of toxic free α-globin.

[1]  D. Cox,et al.  Protein aggregation in cell biology: An aggregomics perspective of health and disease. , 2020, Seminars in cell & developmental biology.

[2]  N. Mizushima A brief history of autophagy from cell biology to physiology and disease , 2018, Nature Cell Biology.

[3]  A. Atanasov,et al.  Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications , 2018, Front. Aging Neurosci..

[4]  M. Justice,et al.  UBE2O remodels the proteome during terminal erythroid differentiation , 2017, Science.

[5]  R. Hegde,et al.  UBE2O is a quality control factor for orphans of multiprotein complexes , 2017, Science.

[6]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[7]  A. Ballabio,et al.  Molecular definitions of autophagy and related processes , 2017, The EMBO journal.

[8]  Mondira Kundu,et al.  Canonical and noncanonical functions of ULK/Atg1. , 2017, Current opinion in cell biology.

[9]  Haibo Zhu,et al.  Dissecting the role of AMP-activated protein kinase in human diseases , 2017, Acta pharmaceutica Sinica. B.

[10]  L. Carneiro,et al.  Heme and iron induce protein aggregation , 2017, Autophagy.

[11]  L. Ye,et al.  p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation , 2016, Cellular & Molecular Biology Letters.

[12]  R. Hardison,et al.  A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition , 2016, Nature Medicine.

[13]  N. Ktistakis,et al.  Digesting the Expanding Mechanisms of Autophagy. , 2016, Trends in cell biology.

[14]  K. Guan,et al.  Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming , 2015, Nature Cell Biology.

[15]  R. Calzolari,et al.  Efficacy of Rapamycin as Inducer of Hb F in Primary Erythroid Cultures from Sickle Cell Disease and β-Thalassemia Patients , 2015, Hemoglobin.

[16]  D. Higgs,et al.  α-Globin as a molecular target in the treatment of β-thalassemia. , 2015, Blood.

[17]  Y. Fujioka,et al.  Atg1 family kinases in autophagy initiation , 2015, Cellular and Molecular Life Sciences.

[18]  Yong Tae Kwon,et al.  Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies , 2015, Experimental & Molecular Medicine.

[19]  S. Honda,et al.  Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes , 2014, Nature Communications.

[20]  A. Lilienbaum Relationship between the proteasomal system and autophagy. , 2017, International journal of biochemistry and molecular biology.

[21]  P. Blackshear,et al.  mTOR regulates cellular iron homeostasis through tristetraprolin. , 2012, Cell metabolism.

[22]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[23]  M. Weiss,et al.  Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia. , 2012, Blood.

[24]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[25]  P. Codogno,et al.  Canonical and non-canonical autophagy: variations on a common theme of self-eating? , 2011, Nature Reviews Molecular Cell Biology.

[26]  J. Keller,et al.  Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells. , 2012, Methods in molecular biology.

[27]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[28]  Marta Martínez-Vicente,et al.  Fighting neurodegeneration with rapamycin: mechanistic insights , 2011, Nature Reviews Neuroscience.

[29]  M. Kundu ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy. , 2011, Antioxidants & redox signaling.

[30]  Xiaodong Wang,et al.  Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK , 2011, Proceedings of the National Academy of Sciences.

[31]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[32]  S. Fucharoen,et al.  Enhanced activation of autophagy in β-thalassemia/Hb E erythroblasts during erythropoiesis , 2011, Annals of Hematology.

[33]  M. Weiss,et al.  Protein quality control during erythropoiesis and hemoglobin synthesis. , 2010, Hematology/oncology clinics of North America.

[34]  Hong-Gang Wang,et al.  The Association of AMPK with ULK1 Regulates Autophagy , 2010, PloS one.

[35]  M. Komatsu,et al.  MBSJ MCC Young Scientist Award 2009
REVIEW: Selective autophagy regulates various cellular functions , 2010, Genes to cells : devoted to molecular & cellular mechanisms.

[36]  H. Hasle,et al.  Nathan and Oski’s Hematology of Infancy and Childhood , 2010 .

[37]  D. Metzger,et al.  Autophagy is required to maintain muscle mass. , 2009, Cell metabolism.

[38]  K. Otsu,et al.  Discovery of Atg5/Atg7-independent alternative macroautophagy , 2009, Nature.

[39]  R. Galanello,et al.  Association of α globin gene quadruplication and heterozygous β thalassemia in patients with thalassemia intermedia , 2009, Haematologica.

[40]  D. Weatherall,et al.  Disorders of Hemoglobin: THE MOLECULAR, CELLULAR, AND GENETIC BASIS OF HEMOGLOBIN DISORDERS , 2009 .

[41]  A. Whitworth,et al.  Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss , 2009, Nature Neuroscience.

[42]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[43]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[44]  D. Rubinsztein,et al.  Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates , 2009, Molecular cell.

[45]  A. Look,et al.  Comprar Nathan and Oski's Hematology of Infancy and Childhood, 7th Edition | David E. Fisher | 9781416034308 | Saunders , 2009 .

[46]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[47]  C. Thompson,et al.  Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. , 2008, Blood.

[48]  Andrew J. Gow,et al.  An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis , 2007 .

[49]  K. Zatloukal,et al.  How a Cell Deals with Abnormal Proteins , 2007, Pathobiology.

[50]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[51]  R. Ljung,et al.  The thalassaemia syndromes , 2007, Scandinavian journal of clinical and laboratory investigation.

[52]  K. Zatloukal,et al.  How a cell deals with abnormal proteins. Pathogenetic mechanisms in protein aggregation diseases. , 2007, Pathobiology : journal of immunopathology, molecular and cellular biology.

[53]  Roberto Gambari,et al.  Effects of rapamycin on accumulation of α‐, β‐ and γ‐globin mRNAs in erythroid precursor cells from β‐thalassaemia patients , 2006 .

[54]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[55]  S. Meredith Protein Denaturation and Aggregation , 2005 .

[56]  D. Weatherall,et al.  A novel molecular basis for beta thalassemia intermedia poses new questions about its pathophysiology. , 2005, Blood.

[57]  A. Gow,et al.  Loss of α-hemoglobin–stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia , 2004 .

[58]  U. Klingmüller,et al.  A mouse model for visualization and conditional mutations in the erythroid lineage. , 2004, Blood.

[59]  M. Trudel,et al.  Differential Regulatory and Compensatory Responses in Hematopoiesis/Erythropoiesis in α- and β-Globin Hemizygous Mice* , 2004, Journal of Biological Chemistry.

[60]  A. Gow,et al.  Loss of alpha-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates beta-thalassemia. , 2004, The Journal of clinical investigation.

[61]  Aaron Ciechanover,et al.  The Ubiquitin Proteasome System in Neurodegenerative Diseases Sometimes the Chicken, Sometimes the Egg , 2003, Neuron.

[62]  G. Blobel,et al.  An abundant erythroid protein that stabilizes free α-haemoglobin , 2002, Nature.

[63]  G. Blobel,et al.  An abundant erythroid protein that stabilizes free alpha-haemoglobin. , 2002, Nature.

[64]  P. Detloff,et al.  A mouse model for beta 0-thalassemia. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Townes,et al.  Mouse model of human beta zero thalassemia: targeted deletion of the mouse beta maj- and beta min-globin genes in embryonic stem cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  D. Higgs The thalassaemia syndromes. , 1993, The Quarterly journal of medicine.

[67]  R. Advani,et al.  Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia. , 1992, Blood.

[68]  N. Mohandas,et al.  The role of membrane skeletal-associated alpha-globin in the pathophysiology of beta-thalassemia , 1990 .

[69]  S. Schrier,et al.  Erythrocyte membrane skeleton abnormalities in severe beta-thalassemia. , 1987, Blood.

[70]  Alter Bp Gel electrophoretic separation of globin chains. , 1981 .

[71]  B. Alter Gel electrophoretic separation of globin chains. , 1981, Progress in clinical and biological research.

[72]  S. Pontremoli,et al.  The Correlation between Red‐Cell Survival and Excess of α‐Globin Synthesis in β‐Thalassaemia , 1969 .

[73]  S. Pontremoli,et al.  The correlation between red-cell survival and excess of alpha-globin synthesis in beta-thalassemia. , 1969, British journal of haematology.