CAN GROUND-BASED TELESCOPES DETECT THE OXYGEN 1.27 μm ABSORPTION FEATURE AS A BIOMARKER IN EXOPLANETS?

The oxygen absorption line imprinted in the scattered light from Earth-like planets has been considered the most promising metabolic biomarker for exolife. We examine the feasibility of the detection of the 1.27 μm oxygen band from habitable exoplanets, in particular, around late-type stars observed with a future instrument on a 30 m class ground-based telescope. We analyzed the night airglow around 1.27 μm with the IRCS/echelle spectrometer on Subaru and found that the strong telluric emission from atmospheric oxygen molecules declines by an order of magnitude by midnight. By compiling nearby star catalogs combined with the sky background model, we estimate the detectability of the oxygen absorption band from an Earth twin, if it exists, around nearby stars. We find that the most dominant source of photon noise for the oxygen 1.27 μm band detection comes from the night airglow if the contribution of the stellar point-spread function (PSF) halo is suppressed enough to detect the planet. We conclude that the future detectors, for which the detection contrast is limited by photon noise, can detect the oxygen 1.27 μm absorption band of Earth twins for ~50 candidates of the late-type star. This paper demonstrates the importance of deploying a small inner working angle as an efficient coronagraph and extreme adaptive optics on extremely large telescopes, and clearly shows that doing so will enable the study of potentially habitable planets.

[1]  M. Papagiannis,et al.  Highlights of the Proceedings - Strategies for the Search for Life in the Universe , 1980 .

[2]  The University of Tokyo,et al.  MAPPING CLOUDS AND TERRAIN OF EARTH-LIKE PLANETS FROM PHOTOMETRIC VARIABILITY: DEMONSTRATION WITH PLANETS IN FACE-ON ORBITS , 2011, 1106.0136.

[3]  J. Bland-Hawthorn,et al.  The case for OH suppression at near-infrared wavelengths , 2008, 0801.3870.

[4]  Michael Shao,et al.  Extreme adaptive optics for the Thirty Meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[5]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[6]  L. Casagrande,et al.  M dwarfs: effective temperatures, radii and metallicities , 2008, 0806.2471.

[7]  Naoshi Baba,et al.  Common-path lateral-shearing nulling interferometry with a Savart plate for exoplanet detection. , 2010, Optics letters.

[8]  G. Perrin,et al.  High dynamic range imaging by pupil single‐mode filtering and remapping , 2006 .

[9]  J. Angel,et al.  A space telescope for infrared spectroscopy of Earth-like planets , 1986, Nature.

[10]  Alan T. Tokunaga,et al.  Infrared camera and spectrograph for the Subaru Telescope , 1994, Astronomical Telescopes and Instrumentation.

[11]  L. Mugnier,et al.  Optimal Method for Exoplanet Detection by Spectral and Angular Differential Imaging , 2010 .

[12]  K. Glazebrook,et al.  Microslit Nod‐Shuffle Spectroscopy: A Technique for Achieving Very High Densities of Spectra , 2000, astro-ph/0011104.

[13]  R. Schiavon,et al.  A library of high resolution synthetic stellar spectra from 300 nm to 1.8 μm with solar and α-enhanced composition , 2005, astro-ph/0505511.

[14]  Kjetil Dohlen,et al.  EPICS: direct imaging of exoplanets with the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[15]  P. Edwards,et al.  GENLN2: A general line-by-line atmospheric transmittance and radiance model. Version 3.0: Description and users guide , 1992 .

[16]  Franck Selsis,et al.  Signature of life on exoplanets: Can Darwin produce false positive detections? , 2002 .

[17]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[18]  Satoru Fukuda,et al.  COLORS OF A SECOND EARTH. II. EFFECTS OF CLOUDS ON PHOTOMETRIC CHARACTERIZATION OF EARTH-LIKE EXOPLANETS , 2011, 1102.3625.

[19]  M. Osorio,et al.  Earth’s transmission spectrum from lunar eclipse observations , 2009, Nature.

[20]  Manoj Joshi,et al.  Climate model studies of synchronously rotating planets. , 2003, Astrobiology.

[21]  E. Gaidos,et al.  CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS , 2011, 1109.2668.

[22]  O. Demangeon,et al.  Is the presence of oxygen on an exoplanet a reliable biosignature? , 2011, Astrobiology.

[23]  Pierre Baudoz,et al.  Self-coherent camera as a focal plane wavefront sensor: simulations , 2009, 0911.2465.

[24]  O. Guyon,et al.  Coronagraphic Low-Order Wavefront Sensor: Postprocessing Sensitivity Enhancer for High-Performance Coronagraphs , 2011, 1112.2817.

[25]  I. Neill Reid,et al.  Low-Mass Binaries and the Stellar Luminosity Function , 1997 .

[26]  Wei Yuan,et al.  Global distributions of OH and O2 (1.27 μm) nightglow emissions observed by TIMED satellite , 2011 .

[27]  M. Shara,et al.  A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15 Seconds of Arc (lspm Catalog -north) , 2004 .

[28]  Eric Gaidos,et al.  SPECTRO-THERMOMETRY OF M DWARFS AND THEIR CANDIDATE PLANETS: TOO HOT, TOO COOL, OR JUST RIGHT? , 2013, 1311.0003.

[29]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[30]  W. Raynor,et al.  C , 2020, The International Dictionary of Artificial Intelligence.

[31]  Laird M. Close,et al.  An Imaging Survey for Extrasolar Planets around 45 Close, Young Stars with the Simultaneous Differential Imager at the Very Large Telescope and MMT , 2007 .

[32]  R. Hata,et al.  OHS: OH-Airglow Suppressor for the Subaru Telescope , 2001 .

[33]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[34]  G. Torres ON THE USE OF EMPIRICAL BOLOMETRIC CORRECTIONS FOR STARS , 2010, 1008.3913.

[35]  Bruno Leibundgut,et al.  Scientific Requirements for Extremely Large Telescopes , 2006 .

[36]  John A. Raven,et al.  Photosynthesis: Likelihood of Occurrence and Possibility of Detection on Earth-like Planets , 2002 .

[37]  Taro Matsuo,et al.  Second-earth imager for TMT (SEIT): a proposal and concept Description , 2010, Astronomical Telescopes + Instrumentation.

[38]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[39]  Yuka Fujii,et al.  MAPPING EARTH ANALOGS FROM PHOTOMETRIC VARIABILITY: SPIN–ORBIT TOMOGRAPHY FOR PLANETS IN INCLINED ORBITS , 2012, 1204.3504.

[40]  M. A. C. Perryman,et al.  The Hipparcos and Tycho catalogues : astrometric and photometric star catalogues derived from the ESA Hipparcos Space Astrometry Mission , 1997 .

[41]  S. Ramsay,et al.  Non-thermal emission in the atmosphere above Mauna Kea , 1992 .

[42]  Hartmut Jahreiss,et al.  Preliminary Version of the Third Catalogue of Nearby Stars , 1991 .

[43]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[44]  M. Osorio,et al.  CHARACTERIZING THE ATMOSPHERES OF TRANSITING ROCKY PLANETS AROUND LATE-TYPE DWARFS , 2011, 1102.4989.

[45]  S. Seager,et al.  Characterization of extrasolar terrestrial planets from diurnal photometric variability , 2001, Nature.

[46]  M. Kasper,et al.  Adaptive optics for Extremely Large Telescopes , 2005, Proceedings of the International Astronomical Union.

[47]  Eric Gaidos,et al.  AN ALL-SKY CATALOG OF BRIGHT M DWARFS , 2011, 1108.2719.

[48]  W. Traub,et al.  A Multiwavelength Differential Imaging Experiment for the High Contrast Imaging Testbed , 2009, 0906.0395.

[49]  Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I. , 2003, astro-ph/0308182.

[50]  G. Rousset,et al.  Post processing of differential images for direct extrasolar planet detection from the ground , 2006, SPIE Astronomical Telescopes + Instrumentation.

[51]  Christophe Verinaud,et al.  Extreme adaptive optics simulations for EPICS , 2010 .

[52]  Pierre Baudoz,et al.  The Self-Coherent Camera : a focal plane sensor for EPICS ? , 2010 .

[53]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[54]  Tom Herbst,et al.  Deciphering spectral fingerprints of habitable exoplanets. , 2009, Astrobiology.

[55]  Michael Wegner,et al.  1st AO4ELT conference , 2010 .

[56]  Giovanna Tinetti,et al.  Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. , 2007, Astrobiology.

[57]  Michael Shao,et al.  Visible nulling interferometer , 2004, SPIE Astronomical Telescopes + Instrumentation.