Microarray platforms for enzymatic and cell-based assays.

This tutorial review introduces the uninitiated to the world of microarrays (or so-called chips) and covers a number of basic concepts such as substrates and surfaces, printing and analysis. It then moves on to look at some newer applications of microarray technology, which include enzyme analysis (notably kinases and proteases) as well as the growing enchantment with so-called cell-based microarrays that offer a unique approach to high-throughput cellular analysis. Finally, it looks forwards and highlights future possible trends and directions in the microarray arena.

[1]  Dustin J Maly,et al.  Peptide microarrays for the determination of protease substrate specificity. , 2002, Journal of the American Chemical Society.

[2]  Jürgen Kreutzberger,et al.  High Throughput Identification of Potential Arabidopsis Mitogen-activated Protein Kinases Substrates*S , 2005, Molecular & Cellular Proteomics.

[3]  S. P. Fodor,et al.  Light-directed, spatially addressable parallel chemical synthesis. , 1991, Science.

[4]  R. Misra,et al.  Biomaterials , 2008 .

[5]  Moo-Yeal Lee,et al.  Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Iain D G Campuzano,et al.  Proteomic Analysis of in Vivo Phosphorylated Synaptic Proteins* , 2005, Journal of Biological Chemistry.

[7]  P. Lohse,et al.  Generating addressable protein microarrays with PROfusion™ covalent mRNA‐protein fusion technology , 2002, Proteomics.

[8]  F. Breitling,et al.  A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. , 2006, Biomaterials.

[9]  R. Shippy,et al.  An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. , 2002, Nucleic acids research.

[10]  M. Lesaicherre,et al.  Antibody-based fluorescence detection of kinase activity on a peptide array. , 2002, Bioorganic & medicinal chemistry letters.

[11]  Daniel G. Anderson,et al.  Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells , 2004, Nature Biotechnology.

[12]  M. Gerstein,et al.  Analysis of yeast protein kinases using protein chips , 2000, Nature Genetics.

[13]  A L Ghindilis,et al.  Immunoassays based on electrochemical detection using microelectrode arrays. , 2004, Biosensors & bioelectronics.

[14]  J. Miyake,et al.  Enzyme family–specific and activity-based screening of chemical libraries using enzyme microarrays , 2005, Nature Biotechnology.

[15]  M. Mrksich,et al.  Peptide chips for the quantitative evaluation of protein kinase activity , 2002, Nature Biotechnology.

[16]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[17]  Juan José Díaz-Mochón,et al.  Combinatorial libraries - from solution to 2D microarrays. , 2005, Chemical communications.

[18]  I. Hamachi,et al.  Semi-wet peptide/protein array using supramolecular hydrogel , 2004, Nature materials.

[19]  S Hamels,et al.  Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. , 2000, Analytical biochemistry.

[20]  Rein V Ulijn,et al.  Understanding enzyme action on immobilised substrates. , 2005, Current opinion in biotechnology.

[21]  D. Sabatini,et al.  Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Brigitte Angres,et al.  Cell adhesion profiling using extracellular matrix protein microarrays. , 2006, BioTechniques.

[23]  C. Ober,et al.  Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. , 2005, Biomacromolecules.

[24]  Jennifer L. Harris,et al.  PNA-encoded protease substrate microarrays. , 2004, Chemistry & biology.

[25]  Oksana Sirenko,et al.  Cell membrane array fabrication and assay technology , 2005, BMC biotechnology.

[26]  Mark Bradley,et al.  Polymer microarrays for cellular adhesion. , 2006, Chemical communications.

[27]  Milan Mrksich,et al.  Micropatterned Surfaces for Control of Cell Shape, Position, and Function , 1998, Biotechnology progress.

[28]  S. Bhatia,et al.  An extracellular matrix microarray for probing cellular differentiation , 2005, Nature Methods.

[29]  Anne E Carpenter,et al.  Microarrays of lentiviruses for gene function screens in immortalized and primary cells , 2006, Nature Methods.

[30]  Paul Schimmel,et al.  M411_3c 107..110 , 2001 .

[31]  A. Mirzabekov,et al.  Protein microchips: use for immunoassay and enzymatic reactions. , 2000, Analytical biochemistry.

[32]  H. Iwata,et al.  Cell microarray for screening feeder cells for differentiation of embryonic stem cells. , 2005, Journal of bioscience and bioengineering.

[33]  H. Lehrach,et al.  Subnanoliter enzymatic assays on microarrays , 2005, Proteomics.

[34]  H. Ploegh,et al.  Catching proteases in action with microarrays. , 2004, Chemistry & biology.

[35]  Polyplexes and lipoplexes for mammalian gene delivery: from traditional to microarray screening. , 2004, Combinatorial chemistry & high throughput screening.

[36]  David M. Sabatini,et al.  Building mammalian signalling pathways with RNAi screens , 2006, Nature Reviews Molecular Cell Biology.

[37]  Shiping Fang,et al.  Surface enzyme kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[38]  Mark Bradley,et al.  Polymer microarrays: identification of substrates for phagocytosis assays. , 2006, Biomaterials.

[39]  J. Stone,et al.  HLA-restricted epitope identification and detection of functional T cell responses by using MHC-peptide and costimulatory microarrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Diamond,et al.  High Throughput Substrate Specificity Profiling of Serine and Cysteine Proteases Using Solution-phase Fluorogenic Peptide Microarrays* , 2005, Molecular & Cellular Proteomics.

[41]  Hiroo Iwata,et al.  Spatially and temporally controlled gene transfer by electroporation into adherent cells on plasmid DNA-loaded electrodes. , 2004, Nucleic acids research.

[42]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[43]  D. Clark,et al.  Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. , 2002, Biotechnology and bioengineering.

[44]  Milan Mrksich,et al.  Profiling kinase activities by using a peptide chip and mass spectrometry. , 2004, Angewandte Chemie.

[45]  M. Bradley,et al.  Dual colour, microarray-based, analysis of 10,000 protease substrates. , 2006, Chemical communications.