Fast and accurate mock catalogue generation for low-mass galaxies

We present an accurate and fast framework for generating mock catalogues including low-mass halos, based on an implementation of the COmoving Lagrangian Acceleration (COLA) technique. Multiple realisations of mock catalogues are crucial for analyses of large-scale structure, but conventional N-body simulations are too computationally expensive for the production of thousands of realisations. We show that COLA simulations can produce accurate mock catalogues with a moderate computation resource for low- to intermediate- mass galaxies in $10^{12} M_\odot$ haloes, both in real and redshift space. COLA simulations have accurate peculiar velocities, without systematic errors in the velocity power spectra for k < 0.15 h/Mpc, and with only 3-per-cent error for k < 0.2 h/Mpc. We use COLA with 10 time steps and a Halo Occupation Distribution to produce 600 mock galaxy catalogues of the WiggleZ Dark Energy Survey. Our parallelized code for efficient generation of accurate halo catalogues is publicly available at github.com/junkoda/cola_halo.

[1]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[2]  F. Bernardeau,et al.  MPTbreeze: a fast renormalized perturbative scheme , 2012, 1207.1465.

[3]  J. Peacock,et al.  Reconstructing the distribution of haloes and mock galaxies below the resolution limit in cosmological simulations , 2012, 1212.3615.

[4]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[5]  Cheng Zhao,et al.  EZmocks: Extending the Zel'dovich approximation to generate mock galaxy catalogues with accurate clustering statistics , 2014, 1409.1124.

[6]  S. Borgani,et al.  An accurate tool for the fast generation of dark matter halo catalogues. , 2013, 1305.1505.

[7]  F. Beutler,et al.  The BOSS–WiggleZ overlap region – II. Dependence of cosmic growth on galaxy type , 2015, 1506.03901.

[8]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[9]  Chris Power,et al.  halogen: a tool for fast generation of mock halo catalogues , 2014, 1412.5228.

[10]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[11]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[12]  W. Percival,et al.  The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15 , 2014, 1409.3238.

[13]  P. Fosalba,et al.  nIFTy cosmology: galaxy/halo mock catalogue comparison project on clustering statistics , 2014, 1412.7729.

[14]  T. Davis,et al.  Are peculiar velocity surveys competitive as a cosmological probe , 2013, 1312.1022.

[15]  C. Blake,et al.  The Gigaparsec WiggleZ simulations: characterizing scale-dependant bias and associated systematics in growth of structure measurements , 2014, 1407.0390.

[16]  M. White,et al.  EMBEDDING REALISTIC SURVEYS IN SIMULATIONS THROUGH VOLUME REMAPPING , 2010, 1003.3178.

[17]  O. Lahav,et al.  Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.

[18]  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[19]  R. Sheth,et al.  PTHALOS: a fast method for generating mock galaxy distributions , 2001, astro-ph/0106120.

[20]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[21]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[22]  Katrin Heitmann,et al.  THE STRUCTURE OF HALOS: IMPLICATIONS FOR GROUP AND CLUSTER COSMOLOGY , 2008, 0803.3624.

[23]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[24]  Ben Moore,et al.  Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation , 2003, astro-ph/0309517.

[25]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[26]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[27]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[28]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: constraining galaxy bias and cosmic growth with three-point correlation functions , 2013, 1303.6644.

[29]  Cullan Howlett,et al.  L-PICOLA: A parallel code for fast dark matter simulation , 2015, Astron. Comput..

[30]  Joel R. Primack,et al.  Halo concentrations in the standard LCDM cosmology , 2011, 1104.5130.

[31]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[32]  P. Monaco,et al.  The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field , 2001 .

[33]  Matias Zaldarriaga,et al.  Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.

[34]  F. Beutler,et al.  The BOSS–WiggleZ overlap region – I. Baryon acoustic oscillations , 2015, 1506.03900.

[35]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[36]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[37]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[38]  G. Zamorani,et al.  The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.

[39]  Y. Jing,et al.  Peculiar velocity decomposition, redshift space distortion, and velocity reconstruction in redshift surveys. II. Dark matter velocity statistics , 2013, 1308.0886.

[40]  Naoyuki Tamura,et al.  The Subaru FMOS galaxy redshift survey (FastSound). I. Overview of the survey targeting Hα emitters at z∼1.4 , 2015, 1502.07900.

[41]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[42]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[43]  Matthew Colless,et al.  The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum , 2010, 1003.5721.

[44]  Ashley J. Ross,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.

[45]  Y. P. Jing Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004 .

[46]  Francisco-Shu Kitaura,et al.  Modelling baryon acoustic oscillations with perturbation theory and stochastic halo biasing , 2013, 1307.3285.

[47]  Takahiro Nishimichi,et al.  Direct and fast calculation of regularized cosmological power spectrum at two-loop order , 2012 .

[48]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[49]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[50]  C. Baugh,et al.  Extending the halo mass resolution of N-body simulations , 2013, 1310.3880.

[51]  A. Cuesta,et al.  A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations - III. Cosmological measurements and interpretation , 2012, 1202.0092.

[52]  Benjamin Dan Wandelt,et al.  Cosmic web-type classification using decision theory , 2015, 1503.00730.

[53]  A. I. Saichev,et al.  The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion , 1989 .

[54]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[55]  Martin White,et al.  Mock galaxy catalogues using the quick particle mesh method , 2013, 1309.5532.

[56]  D. P. Schneider,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2005 .

[57]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[58]  Roman Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .

[59]  Shaun A. Thomas,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.

[60]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[61]  G. Bernstein,et al.  Optimal linear reconstruction of dark matter from halo catalogues , 2010, 1007.3500.