Semi‐global stabilization via linear sampled‐data output feedback for a class of uncertain nonlinear systems

This paper develops a systematic design scheme to construct a linear sampled‐data output feedback controller that semi‐globally asymptotically stabilizes a class of uncertain systems with both higher‐order and linear growth nonlinearities. To deal with the uncertain coefficients in the systems, a robust state feedback stabilizer and a reduced‐order sampled‐data observer, both in the linear form, are constructed and then integrated together. The semi‐global attractivity and local stability are delicately proved by carefully selecting a scaling gain using the output feedback domination approach and a sampling period sufficiently small to restrain the state growth under a zero‐order‐holder input. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  H. Piaggio Mathematical Analysis , 1955, Nature.

[2]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[3]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[4]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[5]  Hassan K. Khalil,et al.  Output feedback sampled-data control of nonlinear systems using high-gain observers , 2001, IEEE Trans. Autom. Control..

[6]  Wei Lin,et al.  Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm , 2002, IEEE Trans. Autom. Control..

[7]  Chunjiang Qian,et al.  A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[8]  Alessandro Astolfi,et al.  Input-to-state stability for discrete-time time-varying systems with applications to robust stabilization of systems in power form , 2005, Autom..

[9]  Chunjiang Qian,et al.  Semi-global stabilization of a class of uncertain nonlinear systems by linear output feedback , 2005, IEEE Trans. Circuits Syst. II Express Briefs.

[10]  C. Qian,et al.  A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback , 2007 .

[11]  Hassan K. Khalil,et al.  Multirate Sampled-Data Output Feedback Control With Application to Smart Material Actuated Systems , 2009, IEEE Transactions on Automatic Control.

[12]  Dragan Nesic,et al.  Explicit Computation of the Sampling Period in Emulation of Controllers for Nonlinear Sampled-Data Systems , 2009, IEEE Transactions on Automatic Control.

[13]  Hak-Keung Lam Output-feedback sampled-data polynomial controller for nonlinear systems , 2011, Autom..

[14]  Bin Tang,et al.  Random stabilization of sampled-data control systems with nonuniform sampling , 2012, Int. J. Autom. Comput..

[15]  Chunjiang Qian,et al.  Global Output Feedback Stabilization of a Class of Nonlinear Systems via Linear Sampled-Data Control , 2012, IEEE Transactions on Automatic Control.

[16]  Ligang Wu,et al.  Sliding mode control with bounded L2 gain performance of Markovian jump singular time-delay systems , 2012, Autom..

[17]  Zidong Wang,et al.  Quantized $H_{\infty }$ Control for Nonlinear Stochastic Time-Delay Systems With Missing Measurements , 2012, IEEE Transactions on Automatic Control.

[18]  Shihua Li,et al.  Global stabilization of a class of uncertain upper‐triangular systems under sampled‐data control , 2013 .

[19]  Huijun Gao,et al.  Finite-Horizon $H_{\infty} $ Filtering With Missing Measurements and Quantization Effects , 2013, IEEE Transactions on Automatic Control.

[20]  Yongduan Song,et al.  A Novel Control Design on Discrete-Time Takagi–Sugeno Fuzzy Systems With Time-Varying Delays , 2013, IEEE Transactions on Fuzzy Systems.

[21]  Vojtech Veselý,et al.  NETWORKED OUTPUT FEEDBACK ROBUST PREDICTIVE CONTROLLER DESIGN , 2013 .