Iftsuv : un spectromètre imageur à transformée de Fourier dans l'ultraviolet pour les prochaines missions spatiales solaires

L'etude du Soleil dans le domaine ultraviolet est capitale pour la comprehension des phenomenes physiques dont l'atmosphere solaire (ou la temperature peut atteindre le million de Kelvin) est le siege. Les principaux outils disponibles sont les imageurs du disque et de la couronne solaire et les spectrometres. Cependant, l'analyse des donnees d'imagerie est tres vite limitee sans information spectrale et l'association d'imageurs et de spectrometres a fente manque souvent de coherence spatiale, spectrale ou temporelle. C'est pourquoi la realisation d'un spectrometre imageur dans l'ultraviolet permettrait une grande avancee pour la physique solaire. Par sa resolution spectrale (en theorie illimitee) et sa capacite a travailler sur de grands champs, le spectrometre imageur a transformee de Fourier est le candidat ideal. Une etude des performances de ce type d'instrument a ete realisee et une maquette de validation du principe de fonctionnement a ete construite, alignee et testee a l'Institut d'Astrophysique Spatiale. Cette maquette a permis de mettre en evidence les points durs associes a realisation et au fonctionnement de ce type d'instrument, en particulier les points durs specifiques au domaine ultraviolet. Elle constitue une etape dans la construction d'un prototype d'instrument pouvant etre embarque sur un satellite d'observation du Soleil a l'horizon 2015.

[1]  A. Nusinov,et al.  Lyman-alpha line intensity as a solar activity index in the far ultraviolet range , 1994 .

[2]  E. M. Reeves,et al.  The extreme-ultraviolet spectrum of a solar active region. , 1973 .

[3]  B. Schmieder,et al.  A Spectroscopic Model of euv Filaments , 2003 .

[4]  J. Bertaux,et al.  Outer heliosphere Lyman alpha background derived from two-shock model hydrogen distributions: Application to the Voyager UVS data , 1996 .

[5]  Kjetil Dohlen,et al.  FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter , 2000, Astronomical Telescopes + Instrumentation.

[6]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[7]  P. Lemaire Quiet sun XUV and EUV spectroscopy , 2007 .

[8]  J. Vial,et al.  Soho Contribution to Prominence Science , 2002 .

[9]  Jean-Pierre Delaboudiniere,et al.  The solar high-resolution imager - coronagraph LYOT mission , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  A. Zhukov,et al.  Coronal plasmoid dynamics I. Dissipative MHD approach , 1998 .

[11]  J. Luciani,et al.  Three-dimensional Solutions of Magnetohydrodynamic Equationsfor Prominence Magnetic Support: Twisted Magnetic Flux Rope , 1999 .

[12]  B. Low,et al.  Three‐dimensional and twisted: An MHD interpretation of on‐disk observational characteristics of coronal mass ejections , 2000 .

[13]  John C. Viney,et al.  The Principles of Interferometric Spectroscopy , 1979 .

[14]  B. Filippov,et al.  On the origin of the prolate solar chromosphere , 2000 .

[15]  B. Schmieder,et al.  Determination of the 3D structure of an EUV-filament observed by SoHO/CDS, SoHO/SUMER and VTT/MSDP , 2004 .

[16]  J. Linsky,et al.  Lyman-alpha rocket spectra and models of the quiet and active solar chromosphere based on partial redistribution diagnostics , 1979 .

[17]  P. Feldman,et al.  Ultraviolet groove efficiency of a holographic grating: implications for a dual-order spectrograph. , 2001, Applied optics.

[18]  J. B. Gurman,et al.  SOHO/EIT observations of an Earth‐directed coronal mass ejection on May 12, 1997 , 1998 .

[19]  P. Lemaire,et al.  Radiance variations of the quiet Sun at far-ultraviolet wavelengths , 2000 .

[20]  C. Joblin,et al.  New results on the massive star-forming region S106 by BEAR spectro-imagery , 2005 .

[21]  R. Kruger,et al.  All-Reflection Interferometer for Use as a Fourier-Transform Spectrometer* , 1972 .

[22]  B. Foing,et al.  New high-resolution rocket-ultraviolet filtergrams of the solar disc , 1986 .

[23]  Anne P. Thorne,et al.  A Fourier transform spectrometer for the vacuum ultraviolet: design and performance , 1987 .

[24]  Donald M. Hassler,et al.  SUMER - Solar Ultraviolet Measurements of Emitted Radiation , 1995 .

[25]  D. K. Prinz The spatial distribution of Lyman-$alpha$ on the Sun , 1974 .

[26]  A. Gabriel Structure of the Quiet Chromosphere and Corona , 1977 .

[27]  Scott H. Hawley,et al.  Measurements of Flow Speeds in the Corona Between 2 and 30 R☉ , 1997 .

[28]  J. Vial,et al.  Physical properties of the solar chromosphere deduced from optically thick lines. I - Observations, data reduction, and modelling of an average plage , 1981 .

[29]  B. Foing,et al.  Rocket photographs of fine structure and wave patterns in the solar temperature minimum , 1982 .

[30]  B. Schmieder,et al.  Why Are Solar Filaments More Extended in Extreme-Ultraviolet Lines than in Hα? , 2001 .

[31]  D. K. Prinz,et al.  SUSIM/UARS observations of the 120 to 300 nm flux variations during the maximum of the solar cycle: Inferences for the 11-year cycle , 1992 .

[32]  L. Anderson,et al.  New fourier transform all-reflection interferometer. , 1973, Applied optics.

[33]  R. J. Speer,et al.  Rocket observations of the ultraviolet solar spectrum during the total eclipse of 1970 March 7 , 1971 .

[34]  A. Zhukov,et al.  Coronal plasmoid dynamics II. The nonstationary fine structure , 2000 .

[35]  R Tousey,et al.  Extreme ultraviolet spectrograph ATM experiment S082B. , 1977, Applied optics.

[36]  D. Rabin,et al.  Pervasive Variability in the Quiet Solar Transition Region , 1992 .

[37]  A. Thorne FOURIER TRANSFORM SPECTROMETRY IN THE VACUUM ULTRAVIOLET APPLICATIONS AND PROGRESS , 1996 .

[38]  Juan M. Fontenla,et al.  The Lyman-Alpha Line in Various Solar Features. I. Observations , 1988 .

[39]  J. Vial Optically thick lines in a quiescent prominence - Profiles of Lyman-alpha, Lyman-beta /H I/, K and H /Mg II/, and K and H /Ca II/ lines with the OSO 8 LPSP instrument , 1982 .

[40]  D. K. Prinz High spatial resolution photographs of the sun in Lα radiation , 1973 .

[41]  Charles C. Kankelborg,et al.  Simultaneous imaging and spectroscopy of the solar atmosphere: advantages and challenges of a 3-order slitless spectrograph , 2001, Optics + Photonics.

[42]  K. Wilhelm,et al.  Hydrogen Lyman α Profiles of AN Active Region Filament Obtained with SUMER on SOHO , 2005 .

[43]  Jay A. Bookbinder,et al.  The transition region and coronal explorer , 1998 .

[44]  E. M. Reeves,et al.  Extreme uv spectroheliometer on the Apollo Telescope Mount. , 1977, Applied optics.

[45]  J. Vial,et al.  The solar hydrogen Lyman-beta and Lyman-alpha lines: disk center observations from OSO 8 compared with theoretical profiles. , 1978 .

[46]  M. J. Griffin,et al.  THE SPIRE INSTRUMENT FOR HERSCHEL , 2001 .

[47]  A. Gabriel Measurements on the Lyman alpha corona , 1971 .

[48]  Giampiero Naletto,et al.  First Results from the Soho Ultraviolet Coronagraph Spectrometer , 1997 .

[49]  J. M. Beckers,et al.  The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission , 1980 .

[50]  R. M. Bonnet,et al.  High-resolution Lyman-alpha filtergrams of the sun , 1980 .

[51]  A. Vourlidas,et al.  On the Correlation between Coronal and Lower Transition Region Structures at Arcsecond Scales , 2001 .

[52]  M. Nicolet,et al.  Solar radio fluxes as indices of solar activity , 1985 .