The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices

We obtain a complete complexity dichotomy for the edge 3colorability within the family of hereditary classes defined by forbidden induced subgraphs on at most 6 vertices and having at most two 6-vertex forbidden induced structures.

[1]  Ingo Schiermeyer,et al.  Vertex Colouring and Forbidden Subgraphs – A Survey , 2004, Graphs Comb..

[2]  Dmitriy S. Malyshev,et al.  The coloring problem for classes with two small obstructions , 2013, Optim. Lett..

[3]  Van Bang Le,et al.  On the complexity of 4-coloring graphs without long induced paths , 2007, Theor. Comput. Sci..

[4]  R. Halin S-functions for graphs , 1976 .

[5]  Dmitriy S. Malyshev,et al.  Two cases of polynomial-time solvability for the coloring problem , 2016, J. Comb. Optim..

[6]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[7]  Vadim V. Lozin,et al.  Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..

[8]  Celina M. H. de Figueiredo,et al.  Complexity separating classes for edge-colouring and total-colouring , 2011, Journal of the Brazilian Computer Society.

[9]  Vadim V. Lozin,et al.  Boundary properties of the satisfiability problems , 2013, Inf. Process. Lett..

[10]  Дмитрий Сергеевич Малышев,et al.  О пересечении и симметрической разности семейств граничных классов для задач о раскраске и о хроматическом числе@@@On intersection and symmetric difference of families of boundary classes in the problems on colouring and on the chromatic number , 2012 .

[11]  Petr A. Golovach,et al.  Three complexity results on coloring Pk-free graphs , 2009, Eur. J. Comb..

[12]  V. E. Alekseev,et al.  On easy and hard hereditary classes of graphs with respect to the independent set problem , 2003, Discret. Appl. Math..

[13]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[14]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[15]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[16]  Gerhard J. Woeginger,et al.  The complexity of coloring graphs without long induced paths , 2001, Acta Cybern..

[17]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[18]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[19]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[20]  Vadim V. Lozin,et al.  NP-hard graph problems and boundary classes of graphs , 2007, Theor. Comput. Sci..

[21]  Shenwei Huang,et al.  Improved complexity results on k-coloring Pt-free graphs , 2013, Eur. J. Comb..

[22]  Hans L. Bodlaender,et al.  Dynamic Programming on Graphs with Bounded Treewidth , 1988, ICALP.

[23]  Vadim V. Lozin,et al.  Boundary properties of graphs for algorithmic graph problems , 2011, Theor. Comput. Sci..

[24]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[25]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[26]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[27]  Vadim V. Lozin Boundary Classes of Planar Graphs , 2008, Comb. Probab. Comput..

[28]  Celina M. H. de Figueiredo,et al.  Edge-colouring and total-colouring chordless graphs , 2013, Discret. Math..

[29]  Dieter Rautenbach,et al.  On the Band-, Tree-, and Clique-Width of Graphs with Bounded Vertex Degree , 2004, SIAM J. Discret. Math..

[30]  Jian Song,et al.  Updating the complexity status of coloring graphs without a fixed induced linear forest , 2012, Theor. Comput. Sci..

[31]  D. Malyshev On the infinity of the set of boundary classes for the edge 3-colorability problem , 2010 .

[32]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[33]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[34]  Celina M. H. de Figueiredo,et al.  Author's Personal Copy Theoretical Computer Science Chromatic Index of Graphs with No Cycle with a Unique Chord , 2022 .

[35]  Jian Song,et al.  4-Coloring H-Free Graphs When H Is Small , 2012, SOFSEM.

[36]  Дмитрий Сергеевич Малышев,et al.  О количестве граничных классов в задаче о 3-раскраске@@@On the number of boundary classes in the 3-colouring problem , 2009 .

[37]  Dmitriy S. Malyshev,et al.  Boundary graph classes for some maximum induced subgraph problems , 2014, J. Comb. Optim..