Approximating Orthogonal Matrices with Effective Givens Factorization
暂无分享,去创建一个
[1] Nicolas Tremblay,et al. Approximate Fast Graph Fourier Transforms via Multilayer Sparse Approximations , 2016, IEEE Transactions on Signal and Information Processing over Networks.
[2] G. Golub,et al. Eigenvalue computation in the 20th century , 2000 .
[3] Pierre Vandergheynst,et al. Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..
[4] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[5] M. V. Wilkes,et al. The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .
[6] Sushant Sachdeva,et al. Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Simple , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[7] Gal Chechik,et al. Coordinate-descent for learning orthogonal matrices through Givens rotations , 2014, ICML.
[8] S. L. Wong,et al. Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.
[9] Arnold Schönhage,et al. Zur quadratischen Konvergenz des Jacobi-Verfahrens , 1964 .
[10] Jack J. Dongarra,et al. Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..
[11] W. Givens. Computation of Plain Unitary Rotations Transforming a General Matrix to Triangular Form , 1958 .
[12] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[13] B. Hall. Lie Groups, Lie Algebras, and Representations , 2003 .
[14] Pascal Frossard,et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.
[15] Stanford,et al. Learning to Discover Social Circles in Ego Networks , 2012 .
[16] A Díaz-Guilera,et al. Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] C. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .
[18] Vikas K. Garg,et al. Multiresolution Matrix Factorization , 2014, ICML.