A shape-persistent alleno-acetylenic macrocycle with a modifiable periphery: synthesis, chiroptical properties and H-bond-driven self-assembly into a homochiral columnar structure.

A shape-persistent alleno-acetylenic macrocycle, peripherally decorated with eight phenolic rings, has been synthesized in enantiomerically pure form. Its electronic circular dichroism spectrum features a strong chiroptical response. In the solid state, the macrocycle stacks in pillars to form channels and the stacks undergo further self-assembly into a three-dimensional porous architecture through lateral intermolecular hydrogen-bonding.

[1]  A. Navarro‐Vázquez,et al.  Rotation-locked 2,6-pyrido-allenophanes: characterization of all stereoisomers. , 2012, Chemistry.

[2]  Hui Li,et al.  Self-assembling subnanometer pores with unusual mass-transport properties , 2012, Nature Communications.

[3]  F. Diederich,et al.  Allenes in molecular materials. , 2012, Angewandte Chemie.

[4]  M. Iyoda,et al.  Conjugated macrocycles: concepts and applications. , 2011, Angewandte Chemie.

[5]  Jeffrey S. Moore,et al.  Engineering solid-state morphologies in carbazole-ethynylene macrocycles. , 2011, Journal of the American Chemical Society.

[6]  F. Diederich,et al.  Enantiopure, monodisperse alleno-acetylenic cyclooligomers: effect of symmetry and conformational flexibility on the chiroptical properties of carbon-rich compounds. , 2011, Chemistry.

[7]  M. Hansen,et al.  Empty helical nanochannels with adjustable order from low-symmetry macrocycles. , 2011, Angewandte Chemie.

[8]  Ana G. Petrovic,et al.  Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. , 2010, Chemistry.

[9]  D. Pasini,et al.  Structurally-variable, rigid and optically-active D2 and D3 macrocycles possessing recognition properties towards C60. , 2010, Organic & biomolecular chemistry.

[10]  F. Diederich,et al.  An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. , 2009, Angewandte Chemie.

[11]  A. Navarro‐Vázquez,et al.  Chiral (2,5)pyrido[7(4)]allenoacetylenic cyclophanes: synthesis and characterization. , 2009, Chemistry.

[12]  K. Ono,et al.  A linear chain of water molecules accommodated in a macrocyclic nanotube channel. , 2009, Nano letters.

[13]  T. Kawase,et al.  8,14,30,36-Tetramethoxy[2.0.2.0](1,6)naphthalenophane-1,19-diyne: a double-helically twisted cyclophane by diastereoselective dimerization. , 2008, Chemistry, an Asian journal.

[14]  Wenbin Lin,et al.  Chiral metallocycles: rational synthesis and novel applications. , 2008, Accounts of chemical research.

[15]  Mathieu Leclère,et al.  Asymmetric allenophanes: synthesis of a tris-meta-allenophane and tetrakis-meta-allenophane by sequential cross-coupling. , 2008, Angewandte Chemie.

[16]  F. Diederich,et al.  1,3-diethynylallenes : Stable monomers, length-defined oligomers, asymmetric synthesis, and optical resolution , 2007 .

[17]  Jeffrey S. Moore,et al.  Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. , 2006, Angewandte Chemie.

[18]  Leonard J Barbour,et al.  Crystal porosity and the burden of proof. , 2006, Chemical communications.

[19]  T. Kawase Allenophane and allenoacetylenic macrocycles: a new class of chiral cyclophanes. , 2005, Angewandte Chemie.

[20]  F. Diederich,et al.  Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. , 2005, Angewandte Chemie.

[21]  S. Höger,et al.  Shape-persistent macrocycles: from molecules to materials. , 2004, Chemistry.

[22]  A. Schlüter,et al.  Shape‐Persistent, Nano‐Sized Macrocycles , 2002 .

[23]  F. Diederich,et al.  Molecular Recognition of Pyranosides by a Family of Trimeric, 1,1′‐Binaphthalene‐Derived Cyclophane Receptors , 1998 .

[24]  Jeffrey S. Moore,et al.  An organic solid with wide channels based on hydrogen bonding between macrocycles , 1994, Nature.

[25]  F. R. Heerden,et al.  Phase-transfer catalysis: A general method of methoxymethylation of the hydroxyl function , 1978 .