Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model

Abstract Contact-free, laser-flash analysis (LFA) accurately (±2%) measures lattice thermal diffusivity ( D ) at high temperature ( T ). Conventional measurements of minerals underestimate D by ∼20% near 298 K due to interface resistance, although simultaneously existing direct radiative transfer artificially elevates D as T rises. Pressure ( P ) determinations possess these and other problems; however, reproduced values of ∂ D /∂ P agree the damped harmonic oscillator model. Models combined with new LFA data on perovskite compounds show that lattice thermal conductivity ( k lat ) is high and independent of T , increasing from 7.5 to 30 W/m K (±25%) across the lower mantle (LM) due to compression. Diffusive radiative transfer is estimated from a recent model: For expected fine grain-size, spectral characteristics do not play a strong role, indicating that k rad increases from ∼1 to ∼5 W/m K across the LM, estimated from olivine spectra. Although greater accuracy through improved measurements is needed, our results demonstrate that the LM is an efficient conductor of heat. Even a low, adiabatic temperature gradient can carry the power inferred to run the dynamo. Mantle convection may be limited to above 670 km.

[1]  L. Slutsky,et al.  Thermal diffusivity of mantle minerals , 1996 .

[2]  L. Kellogg,et al.  Dynamic effects of a step‐wise increase in thermal conductivity and viscosity in the lowermost mantle , 2006 .

[3]  F. R.,et al.  Heat transfer in quartz, orthoclase, and sanidine at elevated temperature , 2002 .

[4]  A. Hofmeister,et al.  Thermal diffusivity of clinopyroxenes at elevated temperature , 2008 .

[5]  David A. Yuen,et al.  Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity , 2002 .

[6]  D. Yuen,et al.  Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity , 2005 .

[7]  B. Militzer,et al.  Measurement of thermal diffusivity at high pressure using a transient heating technique , 2007 .

[8]  A. Hofmeister Dependence of diffusive radiative transfer on grain-size, temperature, and Fe-content: Implications for mantle processes , 2005 .

[9]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[10]  T. Russell,et al.  All-optical technique for measuring thermal properties of materials at static high pressure , 2000 .

[11]  D. Lee,et al.  Radiation Energy Transfer and Thermal Conductivity of Ceramic Oxides , 1960 .

[12]  D. Yuen,et al.  Critical phenomena in thermal conductivity: Implications for lower mantle dynamics , 2007 .

[13]  B. Kellett The Steady Flow of Heat through Hot Glass , 1952 .

[14]  John Ziman,et al.  Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[15]  H. Mehling,et al.  Thermal Diffusivity of Semitransparent Materials Determined by the Laser-Flash Method Applying a New Analytical Model , 1998 .

[16]  Falko Langenhorst,et al.  Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K , 2004 .

[17]  A. Duba,et al.  Optical absorption and radiative heat transport in olivine at high temperature , 1979 .

[18]  G. A. Slack,et al.  Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .

[19]  S. Clark Radiative transfer ia the Earth's mantle , 1957 .

[20]  D. Yuen,et al.  The influence of variable viscosity on delayed cooling due to variable thermal conductivity , 2004 .

[21]  A. Whittington,et al.  Transport properties of low-sanidine single-crystals, glasses and melts at high temperature , 2008 .

[22]  A. Hofmeister Thermal diffusivity of aluminous spinels and magnetite at elevated temperature with implications for heat transport in Earth’s transition zone , 2007 .

[23]  T. Tong Thermal Conductivity 22 , 1994 .

[24]  M. Gerbault At what stress level is the central Indian Ocean lithosphere buckling , 2000 .

[25]  Thomas Cudahy,et al.  Infrared Spectroscopy in Geochemistry, Exploration Geochemistry, and Remote Sensing. Penelope King, Michael Ramsey, and Gregg Swayze, editors. Mineralogical Association of Canada, Short Course Series Volume 33. 2004. 284 Pp. ISBN 0-921294-33-6. Price $40. , 2005 .

[26]  A. Hofmeister Enhancement of radiative transfer in the upper mantle by OH− in minerals , 2004 .

[27]  M. Osako,et al.  Thermal diffusivity of MgSiO3 perovskite , 1991 .

[28]  A. Hofmeister Thermal diffusivity of garnets at high temperature , 2006 .

[29]  D. Yuen,et al.  The Threshold Dependencies of Thermal Conductivity and Implications on Mantle Dynamics , 2004 .

[30]  David A. Yuen,et al.  Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: implications for faster ductile faulting and earthquakes in the spinel stability field , 2000 .

[31]  A. Hofmeister,et al.  Thermal diffusivity of olivine-group minerals at high temperature , 2006 .

[32]  V. Struzhkin,et al.  Reduced Radiative Conductivity of Low-Spin (Mg,Fe)O in the Lower Mantle , 2006, Science.

[33]  Anne M. Hofmeister,et al.  Thermal diffusivity of quartz to 1,000°C: effects of impurities and the α-β phase transition , 2007 .

[34]  A. Hofmeister Pressure dependence of thermal transport properties , 2007, Proceedings of the National Academy of Sciences.

[35]  Anne M. Hofmeister,et al.  Factors affecting heat transfer in natural SiO2 solids , 2008 .

[36]  M. Osako,et al.  Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure , 2004 .