Fluorescent labels in biosensors for pathogen detection

Abstract Infectious diseases caused by pathogens have become a life-threatening problem for millions of people around the world in recent years. Therefore, the need of efficient, fast, low-cost and user-friendly biosensing systems to monitor pathogen has increased enormously in the last few years. This paper presents an overview of different fluorescent labels and the utilization of fluorescence-based biosensor techniques for rapid, direct, sensitive and real-time identification of bacteria. In these biosensors, organic dyes, nanomaterials and rare-earth elements are playing an increasing role in the design of biosensing systems with an interest for applications in bacterial analysis.

[1]  Theresa Curtis,et al.  Development of a mast cell-based biosensor. , 2008, Biosensors & bioelectronics.

[2]  M. Ravichandran,et al.  A rapid DNA biosensor for the molecular diagnosis of infectious disease. , 2011, Biosensors & bioelectronics.

[3]  G. Song,et al.  A graphene oxide–rhodamine 6G nanocomposite as turn-on fluorescence probe for selective detection of DNA , 2012 .

[4]  John G. Bruno,et al.  Fluorescence Assay Based on Aptamer-Quantum Dot Binding to Bacillus thuringiensis Spores , 2007, Journal of Fluorescence.

[5]  A novel bifunctional europium complex as a potential fluorescent label for DNA detection. , 2010, The Analyst.

[6]  Menachem Elimelech,et al.  Single-walled carbon nanotubes exhibit strong antimicrobial activity. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  Yuzuru Takamura,et al.  Escherichia coli single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor , 2005, Analytical and bioanalytical chemistry.

[8]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[9]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[10]  A. Giletto,et al.  A novel ELISA format for the rapid and sensitive detection of staphylococcal enterotoxin A. , 1998, Bioscience, biotechnology, and biochemistry.

[11]  Geoffrey B. Smith,et al.  Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram. , 2009, Water research.

[12]  R. Haugland,et al.  Alexa Dyes, a Series of New Fluorescent Dyes that Yield Exceptionally Bright, Photostable Conjugates , 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[13]  Ya‐Ping Sun,et al.  Carbon dots for optical imaging in vivo. , 2009, Journal of the American Chemical Society.

[14]  Y. Hsiao,et al.  Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release , 2012 .

[15]  Guilan Wang,et al.  Lanthanide Complex-Based Fluorescence Label for Time-Resolved Fluorescence Bioassay , 2005, Journal of Fluorescence.

[16]  Jingli Yuan,et al.  Fluorescence Enhancement by Electron-Withdrawing Groups on β-Diketones in Eu(III)-β-diketonato-topo Ternary Complexes , 1996 .

[17]  Sonia Magaña,et al.  Monitoring biosensor capture efficiencies: development of a model using GFP-expressing Escherichia coli O157:H7. , 2008, Journal of microbiological methods.

[18]  P. Ajayan,et al.  Carbon nanotube filters , 2004, Nature materials.

[19]  D. Delpy,et al.  Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. , 1988, Biochimica et biophysica acta.

[20]  Latha A. Gearheart,et al.  Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. , 2004, Journal of the American Chemical Society.

[21]  Wen-Tso Liu,et al.  Quantum Dots as a Novel Immunofluorescent Detection System for Cryptosporidium parvum and Giardia lamblia , 2004, Applied and Environmental Microbiology.

[22]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[23]  J. Gaillard,et al.  Monitoring epidemic viral respiratory infections using one‐step real‐Time Triplex RT‐PCR targeting influenza A and B viruses and respiratory syncytial virus† , 2011, Journal of medical virology.

[24]  Yan-Jun Huang,et al.  Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots , 2012 .

[25]  S. Nie,et al.  Chemical analysis and cellular imaging with quantum dots. , 2004, The Analyst.

[26]  Kai Xu,et al.  Recent Development of Nano-Materials Used in DNA Biosensors , 2009, Sensors.

[27]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[28]  Lehui Lu,et al.  Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. , 2009, Angewandte Chemie.

[29]  Cyndee Gruden,et al.  Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. , 2007, Journal of the American Chemical Society.

[30]  Yanbin Li,et al.  Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. , 2006, The Analyst.

[31]  Y. Duan,et al.  Plasma-enhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-induced fluorescence spectroscopy. , 2013, Analytical chemistry.

[32]  Y. Duan,et al.  Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine , 2012 .

[33]  Matthias Seydack,et al.  Nanoparticle labels in immunosensing using optical detection methods. , 2005, Biosensors & bioelectronics.

[34]  Arun K. Bhunia,et al.  Detection of Low Levels of Listeria monocytogenes Cells by Using a Fiber-Optic Immunosensor , 2004, Applied and Environmental Microbiology.

[35]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[36]  Shuming Nie,et al.  Quantum dots in biology and medicine , 2004 .

[37]  Adela C. Bonoiu,et al.  Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in Vitro , 2010 .

[38]  C. Souchier,et al.  Evaluation of five green fluorescence-emitting streptavidin-conjugated fluorochromes for use in immunofluorescence microscopy , 1996, Histochemistry and Cell Biology.

[39]  M. Tabacco,et al.  Optical sensors for detection of bacteria. 1. General concepts and initial development. , 2001, Analytical chemistry.

[40]  Hanzhong Wang,et al.  Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71. , 2011, Analytical chemistry.

[41]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[42]  H. Weller,et al.  Luminescent energy transfer between cadmium telluride nanoparticle and lanthanide(III) chelate in competitive bioaffinity assays of biotin and estradiol. , 2007, Analytica chimica acta.

[43]  Kemin Wang,et al.  Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives. , 2008, Biosensors & bioelectronics.

[44]  Hong Zhang,et al.  Multi-targeting single fiber-optic biosensor based on evanescent wave and quantum dots. , 2010, Biosensors & bioelectronics.

[45]  T. K. Maiti,et al.  Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. , 2012, Chemical communications.

[46]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[47]  D. Demarco,et al.  Detection of low levels of Listeria monocytogenes within 20 hours using an evanescent wave biosensor. , 2001, American clinical laboratory.

[48]  Michael F. Slavik,et al.  RAPID DETECTION OF LISTERIA MONOCYTOGENES USING QUANTUM DOTS AND NANOBEADS‐BASED OPTICAL BIOSENSOR , 2007 .

[49]  Sheila N. Baker,et al.  Luminescent carbon nanodots: emergent nanolights. , 2010, Angewandte Chemie.

[50]  Hwan-You Chang,et al.  A quantum dot-based optical immunosensor for human serum albumin detection. , 2012, Biosensors & bioelectronics.

[51]  Miriam M. Ngundi,et al.  Rapid detection of foodborne contaminants using an Array Biosensor , 2006 .

[52]  Xiaoling Yang,et al.  Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. , 2012, Chemical communications.

[53]  H. Beckers,et al.  The efficacy of enzyme immunoassays for the detection of salmonellas , 1988 .

[54]  Arben Merkoçi,et al.  Nanoparticles-based strategies for DNA, protein and cell sensors. , 2010, Biosensors & bioelectronics.

[55]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[56]  Shuming Nie,et al.  Real-Time Detection of Virus Particles and Viral Protein Expression with Two-Color Nanoparticle Probes , 2005, Journal of Virology.

[57]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[58]  S. Deng,et al.  Adsorption Equilibrium and Kinetics of Microorganisms on Single-Wall Carbon Nanotubes , 2008, IEEE Sensors Journal.

[59]  T. Soukka,et al.  Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. , 2001, Clinical chemistry.

[60]  Y H Chang,et al.  Detection of protein A produced by Staphylococcus aureus with a fiber-optic-based biosensor. , 1996, Bioscience, biotechnology, and biochemistry.

[61]  S. García,et al.  Guide to foodborne pathogens. , 2013 .

[62]  Jian-hui Jiang,et al.  Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. , 2010, Analytical chemistry.

[63]  Huan-Tsung Chang,et al.  Synthesis and analytical applications of photoluminescent carbon nanodots , 2012 .

[64]  X. Qu,et al.  Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents , 2011 .

[65]  K. Lee,et al.  Effects of dopamine concentration on energy transfer between dendrimer-QD and dye-labeled antibody. , 2009, Ultramicroscopy.

[66]  C. J. Lewis,et al.  Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. , 1993, Bioconjugate chemistry.

[67]  E. Giannelis,et al.  Photoluminescent Carbogenic Dots , 2008 .

[68]  X. Hun,et al.  A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels , 2007 .

[69]  Harshini Mukundan,et al.  Quantitative multiplex detection of pathogen biomarkers on multichannel waveguides. , 2010, Analytical chemistry.

[70]  Y. Duan,et al.  Graphene and its derivatives for cell biotechnology. , 2013, The Analyst.

[71]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[72]  Yi Lin,et al.  On-chip dual detection of cancer biomarkers directly in serum based on self-assembled magnetic bead patterns and quantum dots. , 2013, Biosensors & bioelectronics.

[73]  A. Schuchat,et al.  Comparison of cold enrichment and U.S. Department of Agriculture methods for isolating Listeria monocytogenes from naturally contaminated foods. The Listeria Study Group , 1991, Applied and environmental microbiology.

[74]  Yanbin Li,et al.  Quantum dots as fluorescent labels for quantitative detection of Salmonella typhimurium in chicken carcass wash water. , 2005, Journal of food protection.

[75]  A. Sutherland,et al.  Quantum dots as luminescent probes in biological systems , 2002 .

[76]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[77]  Jing Yang,et al.  One-step synthesis of fluorescent carbon nanoparticles by laser irradiation , 2009 .

[78]  Lei Shen Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments , 2011, Journal of functional biomaterials.

[79]  Pekka Hänninen,et al.  Multiple sized europium(III) chelate-dyed polystyrene particles as donors in FRET - an application for sensitive protein quantification utilizing competitive adsorption. , 2009, The Analyst.

[80]  Shuming Nie,et al.  Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry , 2007, Nature Protocols.

[81]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[82]  Huzhi Zheng,et al.  Study on the fluorescence characteristics of carbon dots. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[83]  Sandra J. Rosenthal,et al.  Bar-coding biomolecules with fluorescent nanocrystals , 2001, Nature Biotechnology.

[84]  J. Irudayaraj,et al.  Biosensors: Pathogen Detection , 2010 .

[85]  O. Tuovinen,et al.  Fluorescence microscopy for visualization of soil microorganisms—a review , 2004, Biology and Fertility of Soils.

[86]  Paige Lacy,et al.  Inhibition of nonspecific binding of fluorescent-labelled antibodies to human eosinophils. , 1998, Journal of immunological methods.

[87]  S. T. Phillips,et al.  Design of small molecule reagents that enable signal amplification via an autocatalytic, base-mediated cascade elimination reaction. , 2012, Chemical communications.

[88]  N. Skovgaard Guide to foodborne pathogens , 2003 .

[89]  Paul Leonard,et al.  The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. , 2006, International journal of biological macromolecules.

[90]  Jason J. Davis,et al.  The immobilisation of proteins in carbon nanotubes , 1998 .

[91]  Ya‐Ping Sun,et al.  Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[92]  Xing Liu,et al.  Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. , 2012, The Analyst.

[93]  A. Deisingh,et al.  Strategies for the detection of Escherichia coli O157:H7 in foods , 2004, Journal of applied microbiology.

[94]  Chris A. Rowe-Taitt,et al.  Array biosensor for detection of biohazards. , 2000, Biosensors & bioelectronics.

[95]  Alan Waggoner,et al.  Fluorescent labels for proteomics and genomics. , 2006, Current opinion in chemical biology.

[96]  Xiaoyun Qin,et al.  Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. , 2012, Analytical chemistry.

[97]  Anees A. Ansari,et al.  Prospects of Nanotechnology in Clinical Immunodiagnostics , 2010, Sensors.

[98]  Cha-Mei Tang,et al.  Detection of water-borne E. coli O157 using the integrating waveguide biosensor. , 2005, Biosensors & bioelectronics.

[99]  H. Ju,et al.  Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. , 2010, Analytical chemistry.

[100]  Sungho Ko,et al.  A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. , 2006, Biosensors & bioelectronics.

[101]  A. Demchenko Introduction to Fluorescence Sensing , 2008, Springer International Publishing.

[102]  Yi Lin,et al.  Shifting and non-shifting fluorescence emitted by carbon nanodots , 2012 .

[103]  Real time biodetection of individual pathogenic microorganisms in food and water. , 2001, Biomedical sciences instrumentation.

[104]  Hedi Mattoussi,et al.  Avidin: a natural bridge for quantum dot-antibody conjugates. , 2002, Journal of the American Chemical Society.

[105]  Yanbin Li,et al.  Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. , 2004, Analytical chemistry.

[106]  N. Dilbaghi,et al.  Biosensors as innovative tools for the detection of food borne pathogens. , 2011, Biosensors & bioelectronics.

[107]  Stephen V. Letcher,et al.  A compact fiber-optic immunosensor for Salmonella based on evanescent wave excitation , 1997 .

[108]  M. S. Thakur,et al.  Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens , 2010, Analytical and bioanalytical chemistry.

[109]  Yongcheng Liu,et al.  Detection of pathogens using luminescent CdSe/ZnS dendron nanocrystals and a porous membrane immunofilter. , 2007, Analytical chemistry.

[110]  Daniel V. Lim,et al.  RAPID DETECTION OF MYCOBACTERIUM TUBERCULOSIS IN LUNG TISSUE USING A FIBER OPTIC BIOSENSOR , 2009 .

[111]  L. Stryer,et al.  Fluorescent phycobiliprotein conjugates for analyses of cells and molecules , 1982, The Journal of cell biology.

[112]  Mingtao Zheng,et al.  One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. , 2012, Chemical communications.

[113]  D. Rodríguez-Lázaro,et al.  Simultaneous detection of Listeria monocytogenes and Salmonella by multiplex PCR in cooked ham , 2005 .

[114]  Zhuyuan Wang,et al.  A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. , 2013, Biosensors & bioelectronics.

[115]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[116]  Tims Tb,et al.  Detection of low levels of Listeria monocytogenes within 20 hours using an evanescent wave biosensor , 2001 .