Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: Theoretical development

We present a global optimization algorithm, Branch-and-Sandwich, for optimistic bilevel programming problems that satisfy a regularity condition in the inner problem. The functions involved are assumed to be nonconvex and twice continuously differentiable. The proposed approach can be interpreted as the exploration of two solution spaces (corresponding to the inner and the outer problems) using a single branch-and-bound tree. A novel branching scheme is developed such that classical branch-and-bound is applied to both spaces without violating the hierarchy in the decisions and the requirement for (global) optimality in the inner problem. To achieve this, the well-known features of branch-and-bound algorithms are customized appropriately. For instance, two pairs of lower and upper bounds are computed: one for the outer optimal objective value and the other for the inner value function. The proposed bounding problems do not grow in size during the algorithm and are obtained from the corresponding problems at the parent node.

[1]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[2]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[3]  Jonathan F. Bard An Algorithm for Solving the General Bilevel Programming Problem , 1983, Math. Oper. Res..

[4]  Angelos Tsoukalas Global optimization algorithms for multi-level and generalized semi-infinite problems , 2009 .

[5]  T. Csendes,et al.  A review of subdivision direction selection in interval methods for global optimization , 1997 .

[6]  R. Horst Bisecton by Global Optimization Revisited , 2010 .

[7]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[8]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[9]  A. Ciric,et al.  A dual temperature simulated annealing approach for solving bilevel programming problems , 1998 .

[10]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[11]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization: Theory, Methods and (NONCONVEX OPTIMIZATION AND ITS APPLICATIONS Volume 37) (Nonconvex Optimization and Its Applications) , 2005 .

[12]  Reiner Horst,et al.  Introduction to Global Optimization (Nonconvex Optimization and Its Applications) , 2002 .

[13]  Nils Tönshoff,et al.  Implementation and Computational Results , 1997 .

[14]  James E. Falk,et al.  A nonconvex max‐min problem , 1977 .

[15]  Jonathan F. BARD,et al.  Convex two-level optimization , 1988, Math. Program..

[16]  L. Vicente,et al.  Geometry and Local Optimality Conditions for Bilevel Programs with Quadratic Strictly Convex Lower Levels , 1995 .

[17]  J. E. Falk,et al.  Infinitely constrained optimization problems , 1976 .

[18]  Stephan Dempe,et al.  A Bundle Algorithm Applied to Bilevel Programming Problems with Non-Unique Lower Level Solutions , 2000, Comput. Optim. Appl..

[19]  Michael P. Friedlander,et al.  A two-sided relaxation scheme for Mathematical Programs with Equilibrium Constraints , 2005, SIAM J. Optim..

[20]  G. Still Solving generalized semi-infinite programs by reduction to simpler problems , 2004 .

[21]  C. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Computers and Chemical Engineering.

[22]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[23]  H. Tuy Convex analysis and global optimization , 1998 .

[24]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[25]  Panos M. Pardalos,et al.  Multilevel Optimization: Algorithms and Applications , 2012 .

[26]  Pierre Hansen,et al.  On the Linear Maxmin and Related Programming Problems , 1998 .

[27]  Reiner Horst,et al.  Global optimization - deterministic approaches, 3. Auflage , 1996 .

[28]  Athanasios Migdalas,et al.  A novel approach to Bilevel nonlinear programming , 2007, J. Glob. Optim..

[29]  Claire S. Adjiman,et al.  Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part II: Convergence analysis and numerical results , 2014, Journal of Global Optimization.

[30]  Alexander Mitsos,et al.  Global solution of nonlinear mixed-integer bilevel programs , 2010, J. Glob. Optim..

[31]  David E. Boyce,et al.  A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows , 1986 .

[32]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[33]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[34]  Paul I. Barton,et al.  Relaxation-Based Bounds for Semi-Infinite Programs , 2008, SIAM J. Optim..

[35]  R. Horst Deterministic global optimization with partition sets whose feasibility is not known: Application to concave minimization, reverse convex constraints, DC-programming, and Lipschitzian optimization , 1988 .

[36]  Oliver Stein,et al.  On generalized semi-infinite optimization and bilevel optimization , 2002, Eur. J. Oper. Res..

[37]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[38]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[39]  R. Hoprst,et al.  Deterministic global optimization with partition sets whose feasibility is not known: Application to concave minimization, reverse convex constraints, DC-programming, and Lipschitzian optimization , 1988 .

[40]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[41]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applications) , 2006 .

[42]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .

[43]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[44]  P. I. Barton,et al.  Issues in the Development of Global Optimization Algorithms for Bilevel Programs with a Nonconvex Inner Program , 2006 .

[45]  S. Dempe First-Order Necessary Optimality Conditions for General Bilevel Programming Problems , 1997 .

[46]  Berç Rustem,et al.  A smoothing algorithm for finite min–max–min problems , 2009, Optim. Lett..

[47]  James E. Falk,et al.  A linear max—min problem , 1973, Math. Program..

[48]  W. Wiesemann,et al.  Global Optimisation of Pessimistic Bi-Level Problems , 2008 .

[49]  Christodoulos A. Floudas,et al.  Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..

[50]  Oliver Stein,et al.  The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming , 2007, SIAM J. Optim..

[51]  Stephan Dempe,et al.  The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs , 2011, J. Optim. Theory Appl..

[52]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[53]  Paul I. Barton,et al.  Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..

[54]  R. Cassidy,et al.  Efficient Distribution of Resources Through Three Levels of Government , 1971 .

[55]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[56]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design , 1990 .

[57]  P. Pardalos,et al.  Minimax and applications , 1995 .

[58]  Claire S. Adjiman,et al.  The HELD algorithm for multicomponent, multiphase equilibrium calculations with generic equations of state , 2012, Comput. Chem. Eng..

[59]  Berç Rustem,et al.  A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems , 2009, J. Glob. Optim..

[60]  Jonathan F. Bard,et al.  A bilevel programming approach to determining tax credits for biofuel production , 2000, Eur. J. Oper. Res..

[61]  R. Lucchetti,et al.  Existence theorems of equilibrium points in stackelberg , 1987 .

[62]  Paul I. Barton,et al.  Global solution of semi-infinite programs , 2004 .

[63]  P. I. Barton,et al.  Bilevel optimization formulation for parameter estimation in vapor–liquid(–liquid) phase equilibrium problems , 2009 .

[64]  Jerome Bracken,et al.  Defense Applications of Mathematical Programs with Optimization Problems in the Constraints , 1974, Oper. Res..

[65]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[66]  Alexander Mitsos,et al.  Convergence rate of McCormick relaxations , 2012, J. Glob. Optim..

[67]  Jacqueline Morgan,et al.  Weak via strong Stackelberg problem: New results , 1996, J. Glob. Optim..

[68]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[69]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[70]  P. Pardalos,et al.  Recent developments and trends in global optimization , 2000 .

[71]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[72]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..

[73]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization , 1990 .

[74]  C. M. Shetty,et al.  Constraint Qualifications Revisited , 1972 .

[75]  Efstratios N. Pistikopoulos,et al.  A bilevel programming framework for enterprise-wide process networks under uncertainty , 2004, Comput. Chem. Eng..

[76]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[77]  H. Th. Jongen,et al.  Bilevel optimization: on the structure of the feasible set , 2012, Math. Program..

[78]  Jacqueline Morgan,et al.  Approximate solutions for two-level optimization problems , 1988 .

[79]  Efstratios N. Pistikopoulos,et al.  A Decomposition-Based Global Optimization Approach for Solving Bilevel Linear and Quadratic Programs , 1996 .

[80]  Jane J. Ye Constraint Qualifications and KKT Conditions for Bilevel Programming Problems , 2006, Math. Oper. Res..

[81]  Oliver Stein,et al.  Generalized semi-infinite programming: A tutorial , 2008 .

[82]  Jonathan F. Bard,et al.  Production planning with variable demand , 1990 .

[83]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[84]  Berç Rustem,et al.  Parametric global optimisation for bilevel programming , 2007, J. Glob. Optim..

[85]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[86]  Georg J. Still,et al.  Generalized semi-infinite programming: numerical aspects , 2001 .

[87]  Xiaotie Deng,et al.  Complexity Issues in Bilevel Linear Programming , 1998 .

[88]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[89]  A. Mitsos Global optimization of semi-infinite programs via restriction of the right-hand side , 2011 .

[90]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[91]  Jonathan F. Bard,et al.  Coordination of a multidivisional organization through two levels of management , 1983 .