Wavelength selective nanophotonic components utilizing channel plasmon polaritons.

We fabricate and investigate wavelength selective components utilizing channel plasmon polaritons (CPPs) and operate at telecom wavelengths: a waveguide-ring resonator-based add-drop multiplexer (WRR-ADM) and a compact (3.75-microm-long) Bragg grating filter (BGF). The CPP waveguides represent 0.5-microm-wide and 1.3-microm-deep V-grooves in gold, which are combined with a 5-microm-radius ring resonator (in the WRR-ADM) or 0.5-microm-long wells milled with the period of 0.75 microm across a groove (in the BGF). The CPP-based components are characterized in the wavelength range of 1425-1600 nm by use of near-field optical microscopy, exhibiting the wavelength selectivity of approximately 40 nm.

[1]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[2]  Donald L. Lee,et al.  Electromagnetic Principles of Integrated Optics , 1986 .