New class of turbo-like codes with universally good performance and high-speed decoding
暂无分享,去创建一个
K. Chugg | P. Thiennviboon | G. D. Dimou | P. Gray | J. Melzer | G. Dimou | Keith M. Chugg1' | Phunsak Thiennviboon2 | Georgios D. Dimou2 | Paul Gray2 | Jordan Melzer1
[1] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[2] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[3] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[4] P. E. McIllree,et al. Channel Capacity Calculations For M-Ary N-Dimensional Signal Sets , 1995 .
[5] Radford M. Neal,et al. Near Shannon limit performance of low density parity check codes , 1996 .
[6] Sergio Benedetto,et al. Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.
[7] Sergio Benedetto,et al. Design of parallel concatenated convolutional codes , 1996, IEEE Trans. Commun..
[8] Niclas Wiberg,et al. Codes and Decoding on General Graphs , 1996 .
[9] Dariush Divsalar,et al. Hybrid concatenated codes and iterative decoding , 1997, Proceedings of IEEE International Symposium on Information Theory.
[10] Dariush Divsalar,et al. Code Performance as a Function of Block Size , 1998 .
[11] Dariush Divsalar,et al. Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.
[12] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[13] Li Ping,et al. Low density parity check codes with semi-random parity check matrix , 1999 .
[14] Li Ping. The SPC technique and low complexity turbo codes , 1999, Seamless Interconnection for Universal Services. Global Telecommunications Conference. GLOBECOM'99. (Cat. No.99CH37042).
[15] S. Brink. Convergence of iterative decoding , 1999 .
[16] Robert J. McEliece,et al. The generalized distributive law , 2000, IEEE Trans. Inf. Theory.
[17] Achilleas Anastasopoulos,et al. Iterative Detection: Adaptivity, Complexity Reduction, and Applications , 2000 .
[18] G. Forney,et al. Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[19] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[20] Brendan J. Frey,et al. Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.
[21] Stephan ten Brink,et al. Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..
[22] Li Ping,et al. Zigzag codes and concatenated zigzag codes , 2001, IEEE Trans. Inf. Theory.
[23] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[24] Yeheskel Bar-Ness,et al. A parallel MAP algorithm for low latency turbo decoding , 2002, IEEE Communications Letters.
[25] Sergio Benedetto,et al. Optimal high-rate convolutional codes for partial response channels , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.
[26] Kung Yao,et al. An efficient and practical architecture for high speed turbo decoders , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).
[27] Ibrahim Altunbas,et al. Design of serial concatenated MSK schemes based on density evolution , 2003, IEEE Trans. Commun..
[28] Dariush Divsalar,et al. Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..
[29] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[30] Dariush Divsalar,et al. Accumulate repeat accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..