Quantified Constraints: The Complexity of Decision and Counting for Bounded Alternation
暂无分享,去创建一个
Heribert Vollmer | Henning Schnoor | Nadia Creignou | Steffen Reith | Michael Bauland | Elmar Böhler | H. Vollmer | N. Creignou | Henning Schnoor | Elmar Böhler | S. Reith | Michael Bauland
[1] Víctor Dalmau Lloret. Some dichotomy theorems on constant-free quantified Boolean formulas , 1997 .
[2] Osamu Watanabe,et al. Polynomial Time 1-Turing Reductions from #PH to #P , 1992, Theor. Comput. Sci..
[3] Viktória Zankó,et al. #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..
[4] Phokion G. Kolaitis,et al. Closures and dichotomies for quantified constraints , 2006, Electron. Colloquium Comput. Complex..
[5] Marc Gyssens,et al. Closure properties of constraints , 1997, JACM.
[6] Thomas J. Schaefer,et al. The complexity of satisfiability problems , 1978, STOC.
[7] Nicholas Pippenger,et al. Theories of computability , 1997 .
[8] Heribert Vollmer,et al. An Algebraic Approach to the Complexity of Generalized Conjunctive Queries , 2004, SAT.
[9] Leslie G. Valiant,et al. The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..
[10] Christos H. Papadimitriou,et al. Computational complexity , 1993 .
[11] M. Nivat. Theoretical Computer Science Volume 213-214 , 1999 .
[12] Richard E. Ladner,et al. On the Structure of Polynomial Time Reducibility , 1975, JACM.
[13] 戸田 誠之助,et al. Computational complexity of counting complexity classes , 1991 .
[14] Albert R. Meyer,et al. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.
[15] Andrei A. Bulatov,et al. A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[16] Heribert Vollmer,et al. Playing with Boolean Blocks , Part II : Constraint Satisfaction Problems 1 , 2004 .
[17] Peter Jeavons,et al. Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..
[18] Tomás Feder,et al. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..
[19] Nadia Creignou,et al. Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..
[20] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[21] Reinhard Pöschel,et al. Funktionen- und Relationenalgebren , 1979 .
[22] Edith Hemaspaandra,et al. Dichotomy Theorems for Alternation-Bounded Quantified Boolean Formulas , 2004, ArXiv.
[23] Peter Jeavons,et al. Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.
[24] Peter Jeavons,et al. On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..
[25] Hubie Chen. The Computational Complexity of Quantified Constraint Satisfaction , 2004 .
[26] Reinhard Pöschel. Galois Connections for Operations and Relations , 2004 .
[27] Peter Jeavons,et al. Quantified Constraints: Algorithms and Complexity , 2003, CSL.
[28] Omer Reingold,et al. Undirected ST-connectivity in log-space , 2005, STOC '05.
[29] Phokion G. Kolaitis,et al. Subtractive reductions and complete problems for counting complexity classes , 2000 .
[30] Richard E. Ladner. Polynomial Space Counting Problems , 1989, SIAM J. Comput..
[31] Celia Wrathall,et al. Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[32] Sanjeev Khanna,et al. Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.
[33] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..