Quantified Constraints: The Complexity of Decision and Counting for Bounded Alternation

We consider constraint satisfaction problems parameterized by the set of allowed constraint predicates. We examine the complexity of quantified constraint satisfaction problems with a bounded number of quantifier alternations and the complexity of the associated counting problems. We obtain classification results that completely solve the Boolean case, and we show that hardness results carry over to the case of arbitrary finite domains.

[1]  Víctor Dalmau Lloret Some dichotomy theorems on constant-free quantified Boolean formulas , 1997 .

[2]  Osamu Watanabe,et al.  Polynomial Time 1-Turing Reductions from #PH to #P , 1992, Theor. Comput. Sci..

[3]  Viktória Zankó,et al.  #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..

[4]  Phokion G. Kolaitis,et al.  Closures and dichotomies for quantified constraints , 2006, Electron. Colloquium Comput. Complex..

[5]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[6]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[7]  Nicholas Pippenger,et al.  Theories of computability , 1997 .

[8]  Heribert Vollmer,et al.  An Algebraic Approach to the Complexity of Generalized Conjunctive Queries , 2004, SAT.

[9]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[10]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[11]  M. Nivat Theoretical Computer Science Volume 213-214 , 1999 .

[12]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[13]  戸田 誠之助,et al.  Computational complexity of counting complexity classes , 1991 .

[14]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[15]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[16]  Heribert Vollmer,et al.  Playing with Boolean Blocks , Part II : Constraint Satisfaction Problems 1 , 2004 .

[17]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[18]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[19]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[20]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[21]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[22]  Edith Hemaspaandra,et al.  Dichotomy Theorems for Alternation-Bounded Quantified Boolean Formulas , 2004, ArXiv.

[23]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[24]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[25]  Hubie Chen The Computational Complexity of Quantified Constraint Satisfaction , 2004 .

[26]  Reinhard Pöschel Galois Connections for Operations and Relations , 2004 .

[27]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[28]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[29]  Phokion G. Kolaitis,et al.  Subtractive reductions and complete problems for counting complexity classes , 2000 .

[30]  Richard E. Ladner Polynomial Space Counting Problems , 1989, SIAM J. Comput..

[31]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[32]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[33]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..