Multiple Event Triggers in Linear Covariance Analysis for Spacecraft Rendezvous

Linear covariance analysis of both navigation error and trajectory dispersion is a powerful tool for spacecraft rendezvous analysis and design. The introduction of multiple events triggered on state conditions causes discrepancies between the linear covariance results and the theoretical results. This work investigates the causes of the discrepancy and introduces a solution to it. The proposed technique is validated by comparison to the results from Monte Carlo simulations.

[1]  C. Grubin Derivation of the quaternion scheme via the Euler axis and angle , 1970 .

[2]  Arthur E. Bryson,et al.  Control of spacecraft and aircraft , 1994 .

[3]  Isaac Elishakoff,et al.  Probabilistic Theory of Structures , 1983 .

[4]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[5]  P. Hughes Spacecraft Attitude Dynamics , 1986 .

[6]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[7]  John L. Goodman,et al.  History of Space Shuttle Rendezvous and Proximity Operations , 2006 .

[8]  Lockheed Martin Seven Spacecraft in One - Orion Guidance, Navigation, and Control , 2008 .

[9]  David K. Geller,et al.  Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard Mission Planning , 2005 .

[10]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[11]  Heather Hinkel,et al.  Laser-Based Relative Navigation and Guidance for Space Shuttle Proximity Operations , 2003 .

[12]  Renato Zanetti,et al.  Multiple Event Triggers in Linear Covariance Analysis for Spacecraft Rendezvous , 2010 .

[13]  M. Kaplan Modern Spacecraft Dynamics and Control , 1976 .

[14]  David K. Geller Orbital Rendezvous: When is Autonomy Required? , 2007 .

[15]  David K. Geller,et al.  Linear Covariance Techniques for Powered Ascent , 2010 .

[16]  Michael J. Osenar Performance of automated feature tracking cameras for lunar navigation , 2007 .

[17]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[18]  David K. Geller,et al.  Relative Angles-Only Navigation and Pose Estimation for Autonomous Orbital Rendezvous , 2006 .

[19]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[20]  David K. Geller,et al.  Linear Covariance Analysis for Powered Lunar Descent and Landing , 2009 .

[21]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[22]  R. Blanchard,et al.  A unified form of Lambert's theorem , 1968 .

[23]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[24]  Renato Zanetti Autonomous Midcourse Navigation for Lunar Return , 2009 .

[25]  Bong Wie,et al.  Space Vehicle Dynamics and Control , 1998 .

[26]  David K. Geller,et al.  Autonomous Optical Navigation at Jupiter: A Linear Covariance Analysis , 2006 .

[27]  Alison Sara Kremer Linear covariance analysis trade study of autonomous navigation schemes for cislunar missions , 2007 .

[28]  Ian Mitchell,et al.  Designing and Validating Proximity Operations Rendezvous and Approach Trajectories for the Cygnus Mission , 2010 .

[29]  David K. Geller,et al.  Event Triggers in Linear Covariance Analysis with Applications to Orbital Rendezvous , 2009 .

[30]  B. Tapley,et al.  Statistical Orbit Determination , 2004 .

[31]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[32]  Jesse Ross Gossner An Analytic Method of Propagating a Covariance Matrix to a Maneuver Condition for Linear Covariance Analysis during Rendezvous , 1991 .

[33]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .