Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum

The only essential function of a unique plastid organelle, the apicoplast, in blood-stage P. falciparum is the production of isoprenoid precursors.

[1]  C. Hillyer Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum: M. Surolia, A. Surolia. Nat Med 7:167–173, 2001 , 2002 .

[2]  M. Good A whole parasite vaccine to control the blood stages of Plasmodium: the case for lateral thinking. , 2011, Trends in parasitology.

[3]  Z. Bonday,et al.  Heme Biosynthesis by the Malarial Parasite , 1997, The Journal of Biological Chemistry.

[4]  H. Ginsburg,et al.  Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. , 1985, Molecular and biochemical parasitology.

[5]  D. Roos,et al.  A plastid segregation defect in the protozoan parasite Toxoplasma gondii , 2001, The EMBO journal.

[6]  J Zuegge,et al.  Deciphering apicoplast targeting signals--feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. , 2001, Gene.

[7]  A. Vaughan,et al.  Genetically engineered, attenuated whole-cell vaccine approaches for malaria , 2010, Human vaccines.

[8]  B. Lell,et al.  Randomized Controlled Trial of Fosmidomycin-Clindamycin versus Sulfadoxine-Pyrimethamine in the Treatment of Plasmodium falciparum Malaria , 2007, Antimicrobial Agents and Chemotherapy.

[9]  J. McCarthy,et al.  Whole parasite blood stage malaria vaccines: A convergence of evidence , 2010, Human vaccines.

[10]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[11]  Karsten Fischer,et al.  The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. , 2010, Cell host & microbe.

[12]  G. McFadden,et al.  Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway , 2000, The EMBO journal.

[13]  Christopher J. Tonkin,et al.  Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast , 2004, Nature Reviews Microbiology.

[14]  M. Rohmer The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. , 1999, Natural product reports.

[15]  D. Chakrabarti,et al.  Protein prenyl transferase activities of Plasmodium falciparum. , 1998, Molecular and biochemical parasitology.

[16]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[17]  D. Roos,et al.  Targeting and Processing of Nuclear-encoded Apicoplast Proteins in Plastid Segregation Mutants of Toxoplasma gondii* , 2001, The Journal of Biological Chemistry.

[18]  S. Müller,et al.  Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites. , 2007, Trends in parasitology.

[19]  Joanne M. Morrisey,et al.  Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum , 2007, Nature.

[20]  T. McCutchan,et al.  Effects of interruption of apicoplast function on malaria infection, development, and transmission. , 2000, Molecular and biochemical parasitology.

[21]  I W Sherman,et al.  Amino acid metabolism and protein synthesis in malarial parasites. , 1977, Bulletin of the World Health Organization.

[22]  Christopher J. Tonkin,et al.  Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum , 2003, Science.

[23]  J. Wiesner,et al.  Fosmidomycin for the treatment of malaria , 2003, Parasitology Research.

[24]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Kirschner,et al.  Thiostrepton and Derivatives Exhibit Antimalarial and Gametocytocidal Activity by Dually Targeting Parasite Proteasome and Apicoplast , 2011, Antimicrobial Agents and Chemotherapy.

[26]  R. Goody,et al.  Understanding and Exploiting Protein Prenyltransferases , 2010, Chembiochem : a European journal of chemical biology.

[27]  J. Jensen,et al.  Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. , 1985, The Journal of protozoology.

[28]  D. Chakrabarti,et al.  Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparum. , 2008, Molecular and biochemical parasitology.

[29]  D. Soldati-Favre,et al.  Metabolic pathways in the apicoplast of apicomplexa. , 2010, International review of cell and molecular biology.

[30]  V. J. Peres,et al.  Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units. , 1999, The Biochemical journal.

[31]  G. McFadden,et al.  Apicoplast and Mitochondrion in Gametocytogenesis of Plasmodium falciparum , 2008, Eukaryotic Cell.

[32]  Geoffrey I. McFadden,et al.  Plastid in human parasites , 1996, Nature.

[33]  B. McManus,et al.  The Human Serum Metabolome , 2011, PloS one.

[34]  Jun Liu,et al.  Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Bernhard O Palsson,et al.  Extreme pathway analysis of human red blood cell metabolism. , 2002, Biophysical journal.

[36]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[37]  Emmanuel Quevillon,et al.  The Plasmodium falciparum family of Rab GTPases. , 2003, Gene.

[38]  M. Cassera,et al.  The Methylerythritol Phosphate Pathway Is Functionally Active in All Intraerythrocytic Stages of Plasmodium falciparum* , 2004, Journal of Biological Chemistry.

[39]  A. J. Nok Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis , 2003, Parasitology Research.

[40]  A. Horák,et al.  A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids , 2010, Proceedings of the National Academy of Sciences.

[41]  Yoshiya Tanaka,et al.  Suppressive effect of azithromycin on Plasmodium berghei mosquito stage development and apicoplast replication , 2010, Malaria Journal.

[42]  K. Matuschewski,et al.  Natural Immunization Against Malaria: Causal Prophylaxis with Antibiotics , 2010, Science Translational Medicine.

[43]  N. Chandra,et al.  Delta-aminolevulinic acid dehydratase from Plasmodium falciparum: indigenous versus imported. , 2004, The Journal of biological chemistry.

[44]  A. Miyajima,et al.  Mitochondria and apicoplast of Plasmodium falciparum: behaviour on subcellular fractionation and the implication. , 2007, Mitochondrion.

[45]  M. Aepfelbacher,et al.  GFP‐targeting allows visualization of the apicoplast throughout the life cycle of live malaria parasites , 2009, Biology of the cell.

[46]  W. V. Van Voorhis,et al.  Functional genetic analysis of the Plasmodium falciparum deoxyxylulose 5-phosphate reductoisomerase gene. , 2010, Molecular and biochemical parasitology.

[47]  N. Surolia,et al.  Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum , 2001, Nature Medicine.

[48]  Joseph L. DeRisi,et al.  Tetracyclines Specifically Target the Apicoplast of the Malaria Parasite Plasmodium falciparum , 2006, Antimicrobial Agents and Chemotherapy.

[49]  A. Vaughan,et al.  Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection , 2010, Molecular microbiology.

[50]  A. Vaughan,et al.  Type II fatty acid synthesis is essential only for malaria parasite late liver stage development , 2008, Cellular microbiology.

[51]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[52]  K. M. Watts,et al.  A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. , 2011, Biochemistry.

[53]  David S. Roos,et al.  A plastid organelle as a drug target in apicomplexan parasites , 1997, Nature.

[54]  K. Nielsen,et al.  Separation of DNA‐containing organelles from Toxoplasma gondii by CZE , 2010, Electrophoresis.

[55]  P. Rosenthal,et al.  Multiple Antibiotics Exert Delayed Effects against the Plasmodium falciparum Apicoplast , 2007, Antimicrobial Agents and Chemotherapy.

[56]  Serge Batalov,et al.  Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum , 2009, Genome Biology.

[57]  K. Kirk,et al.  Membrane transport in the malaria-infected erythrocyte , 2000 .

[58]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[59]  M. Wink Medicinal Natural Products. A Biosynthetic Approach , 2002 .

[60]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[61]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[62]  J. Jensen,et al.  Nutritional requirements of Plasmodium falciparum in culture. II. Effects of antimetabolites in a semi-defined medium. , 1985, The Journal of protozoology.