Hetero[8]circulenes: synthetic progress and intrinsic properties.

In this Feature Article, we summarize the synthetic progress of hetero[8]circulenes, focusing on their structures and intrinsic properties. Various hetero[8]circulenes have been synthesized to date, of which structural features are categorized on the basis of the numbers of annulated pentagons. From the viewpoint of key steps, the synthetic routes are classified into two methodologies, the annulative construction of the central eight-membered ring and the ring fusion of eight-membered ring precursors. Electronic and photophysical properties based on the structural features and the introduced heteroatoms of hetero[8]circulenes are also described.

[1]  H. Shinokubo,et al.  Aggregation-Induced Emission in Tetrathia[8]circulene Octaoxides via Restriction of the Dynamic Motion of their Negatively Curved π-Frameworks. , 2020, Chemistry, an Asian journal.

[2]  H. Ågren,et al.  A Fully Conjugated Planar Heterocyclic [9]Circulene. , 2020, Journal of the American Chemical Society.

[3]  A. Osuka,et al.  Diazadimethano[8]circulene: Synthesis, Structure, Properties, and Isolation of Stable Radical Cation , 2020, Chemistry Letters.

[4]  K. Sun,et al.  On-Surface Synthesis of a π-Extended Diaza[8]circulene. , 2020, Journal of the American Chemical Society.

[5]  A. Osuka,et al.  Highly Stable Radical Cations of N,N'-Diarylated Tetrabenzotetraaza[8]circulene. , 2020, Chemistry.

[6]  H. Ågren,et al.  Compressing a non-planar aromatic heterocyclic [7]helicene to a planar hetero[8]circulene. , 2020, Chemistry.

[7]  H. Ågren,et al.  Anti-aromatic vs. induced paratropicity: synthesis and interrogation of a dihydro-diazatrioxa[9]circulene with a proton placed directly above the central ring. , 2020, Angewandte Chemie.

[8]  H. Shinokubo,et al.  Systematic Synthesis of Tetrathia[8]circulenes: The Influence of Peripheral Substituents on the Structures and Properties in Solution and Solid States. , 2019, The Journal of organic chemistry.

[9]  H. Yorimitsu,et al.  Synthesis of N-Alkyl and N-H Carbazoles via SNAr-based Aminations of Dibenzothiophene dioxides. , 2019, Chemistry.

[10]  M. Stępień,et al.  Bowls, Hoops, and Saddles: Synthetic Approaches to Curved Aromatic Molecules. , 2018, Angewandte Chemie.

[11]  Li Xu,et al.  From Saddle-Shaped to Planar Cyclic Oligothienoacenes: Stepped-Cyclization and Their Applications in OFETs. , 2018, Organic letters.

[12]  H. Shinokubo,et al.  Synthesis and Photodynamics of Tetragermatetrathia[8]circulene. , 2018, Organic letters.

[13]  A. Osuka,et al.  Sequential N-Alkylations of Tetrabenzotetraaza[8]circulene as a Tool To Tune Its Optical Properties. , 2017, ChemPlusChem.

[14]  H. Shinokubo,et al.  Synthesis of Tetrasilatetrathia[8]circulenes by a Fourfold Intramolecular Dehydrogenative Silylation of C-H Bonds. , 2017, Chemistry.

[15]  H. Shinokubo,et al.  Synthesis of Tetraaza[8]circulenes from Tetrathia[8]circulenes through an SNAr-Based Process. , 2017, Organic letters.

[16]  Chun-Lin Deng,et al.  Quasi-planar diazadithio and diazodiseleno[8]circulenes: synthesis, structures and properties , 2017 .

[17]  T. Tanaka,et al.  Comparative study of the structural and spectral properties of tetraaza- and tetraoxaannelated tetracirculenes , 2017 .

[18]  M. Mayor,et al.  Chirality in curved polyaromatic systems. , 2017, Chemical Society reviews.

[19]  M. Stępień,et al.  Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. , 2017, Chemical reviews.

[20]  H. Ågren,et al.  Recent progress in quantum chemistry of hetero[8]circulenes , 2017 .

[21]  A. Osuka,et al.  Synthesis of Spirocyclic Diarylfluorenes by One-Pot Twofold SNAr Reactions of Diaryl Sulfones with Diarylmethanes. , 2016, Organic letters.

[22]  N. N. Karaush,et al.  Structure and spectroscopic characterization of tetrathia- and tetraselena[8]circulenes as a new class of polyaromatic heterocycles. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[23]  H. Shinokubo,et al.  Diversity-oriented synthesis of tetrathia[8]circulenes by sequential C-H borylation and annulation. , 2015, Chemical communications.

[24]  Dongho Kim,et al.  Synthesis of a Tetrabenzotetraaza[8]circulene by a "Fold-In" Oxidative Fusion Reaction. , 2015, Angewandte Chemie.

[25]  A. Osuka,et al.  Transition-Metal-Free Synthesis of Carbazoles and Indoles by an SN Ar-Based "Aromatic Metamorphosis" of Thiaarenes. , 2015, Angewandte Chemie.

[26]  F. S. Kamounah,et al.  Synthesis and properties of unsymmetrical azatrioxa[8]circulenes. , 2015, Organic & biomolecular chemistry.

[27]  N. N. Karaush,et al.  Aromaticity of the completely annelated tetraphenylenes: NICS and GIMIC characterization , 2015, Journal of Molecular Modeling.

[28]  G. Baryshnikov,et al.  Tetrathio and tetraseleno[8]circulenes: synthesis, structures, and properties. , 2015, Chemistry, an Asian journal.

[29]  X. Ju,et al.  Structures and charge transport properties of “selenosulflower” and its selenium analogue “selflower”: computer-aided design of high-performance ambipolar organic semiconductors , 2015 .

[30]  M. Nakano,et al.  Tetracyclopenta[def,jkl,pqr,vwx]tetraphenylene: a potential tetraradicaloid hydrocarbon. , 2015, Angewandte Chemie.

[31]  I. Osaka,et al.  Naphthodithiophenes: emerging building blocks for organic electronics. , 2015, Chemical record.

[32]  Hao‐Li Zhang,et al.  High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. , 2014, Physical chemistry chemical physics : PCCP.

[33]  N. N. Karaush,et al.  Aromaticity of the planar hetero[8]circulenes and their doubly charged ions: NICS and GIMIC characterization. , 2014, Physical chemistry chemical physics : PCCP.

[34]  Severin T. Schneebeli,et al.  Synthesis and structural data of tetrabenzo[8]circulene. , 2014, Chemistry.

[35]  T. Aoki,et al.  Theoretical Study Demonstrating that Silylene Bridging Brings about LUMO Energy Lowering without Increasing the Reorganization Energy for Single Electron Transfer , 2014 .

[36]  G. Baryshnikov,et al.  Diazadioxa[8]circulenes: planar antiaromatic cyclooctatetraenes. , 2013, Chemistry.

[37]  Truong Ba Tai,et al.  Design of aromatic heteropolycyclics containing borole frameworks. , 2013, Chemical communications.

[38]  Toshiyasu Suzuki,et al.  Tetrabenzo[8]circulene: aromatic saddles from negatively curved graphene. , 2013, Journal of the American Chemical Society.

[39]  M. Kuo,et al.  Synthesis, structural analysis, and properties of [8]circulenes. , 2013, Angewandte Chemie.

[40]  G. Baryshnikov,et al.  Azatrioxa[8]circulenes: planar anti-aromatic cyclooctatetraenes. , 2013, Chemistry.

[41]  J. Siegel,et al.  Kilogram-Scale Production of Corannulene , 2012 .

[42]  K. Awaga,et al.  Ionic-Liquid Component Dependence of Carrier Injection and Mobility for Electric-Double-Layer Organic Thin-Film Transistors , 2012 .

[43]  P. Hammershøj,et al.  Tetra-tert-butyltetraoxa(8)circulene and Its Unusual Aggregation Behaviour , 2011 .

[44]  G. Baryshnikov,et al.  Density functional theory study of electronic structure and spectra of tetraoxa[8]circulenes , 2011 .

[45]  J. B. Christensen,et al.  Organic light-emitting diodes from symmetrical and unsymmetrical π-extended tetraoxa[8]circulenes. , 2010, Chemistry.

[46]  K. Awaga,et al.  Dual-gate field-effect transistors of octathio[8]circulene thin-films with ionic liquid and SiO2 gate dielectrics , 2010 .

[47]  M. Iyoda,et al.  Cyclic tetrathiophenes planarized by silicon and sulfur bridges bearing antiaromatic cyclooctatetraene core: syntheses, structures, and properties. , 2010, Journal of the American Chemical Society.

[48]  K. Awaga,et al.  Electrochemical field-effect transistors of octathio[8]circulene robust thin films with ionic liquids , 2009 .

[49]  Swapan K. Pati,et al.  Large carrier mobilities in octathio[8]circulene crystals: a theoretical study , 2009 .

[50]  F. Rosei,et al.  Supramolecular assembly of heterocirculenes in 2D and 3D. , 2009, Chemical communications.

[51]  Jingping Zhang,et al.  Charge transport parameters and structural and electronic properties of octathio[8]circulene and its plate-like derivatives. , 2009, The journal of physical chemistry. A.

[52]  F. Rosei,et al.  Heterocirculenes as a new class of organic semiconductors. , 2008, Chemical communications.

[53]  K. Awaga,et al.  Electrochemical and electrochromic properties of octathio[8]circulene thin films in ionic liquids. , 2008, Journal of the American Chemical Society.

[54]  K. Lyssenko,et al.  Two modifications formed by "sulflower" C16S8 molecules, their study by XRD and optical spectroscopy (Raman, IR, UV-Vis) methods. , 2008, The journal of physical chemistry. A.

[55]  K. Awaga,et al.  Molecular, crystal, and thin-film structures of octathio[8]circulene: release of antiaromatic molecular distortion and lamellar structure of self-assembling thin films. , 2008, Chemistry.

[56]  V. Nenajdenko,et al.  From thiophene to Sulflower , 2008 .

[57]  Jingping Zhang,et al.  Shedding light on octathio[8]circulene and some of its plate-like derivatives. , 2008, Physical chemistry chemical physics : PCCP.

[58]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[59]  V. Nenajdenko,et al.  "Sulflower": a new form of carbon sulfide. , 2006, Angewandte Chemie.

[60]  Dongho Kim,et al.  A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. , 2006, Journal of the American Chemical Society.

[61]  R. Rathore,et al.  Soluble cycloannulated tetroxa[8]circulane derivatives: synthesis, optical and electrochemical properties, and generation of their robust cation-radical salts , 2004 .

[62]  F. Klärner About the Antiaromaticity of Planar Cyclooctatetraene. , 2001, Angewandte Chemie.

[63]  A. Matsuura,et al.  Efficient synthesis of benzene and planar cyclooctatetraene fully annelated with bicyclo[2.1.1]hex-2-ene. , 2001, Journal of the American Chemical Society.

[64]  J. B. Christensen,et al.  Substituted Tetraoxa[8]circulenes ‐ New Members of the Liquid Crystal Family , 2000 .

[65]  J. Siegel,et al.  Synthesis of Corannulene and Alkyl Derivatives of Corannulene , 1999 .

[66]  Gerhard Wegner,et al.  Electronic Materials: The Oligomer Approach , 1998 .

[67]  L. T. Scott,et al.  Corannulene. A Three-Step Synthesis1 , 1997 .

[68]  K. Kitaura,et al.  Convenient New Synthesis of [7]Circulene† , 1996 .

[69]  K. Takeuchi,et al.  Synthesis, structure, and reduction of the cyclooctatetraene tetra-annelated with bicyclo[2.2.2]octene frameworks , 1991 .

[70]  L. T. Scott,et al.  Corannulene. A convenient new synthesis , 1991 .

[71]  K. Takeuchi,et al.  Generation and oligomerization of bicyclo[2.2.2]octyne and properties of tris(bicyclo[2.2.2]octeno)benzene obtained from the linear trimer , 1991 .

[72]  Y. Kai,et al.  Synthesis and molecular structure of [7]circulene , 1988 .

[73]  Y. Kai,et al.  Synthesis and characterization of [7]circulene , 1983 .

[74]  H. Högberg,et al.  The acid-catalysed oligomerisation of p-benzoquinone , 1979 .

[75]  H. Högberg,et al.  Quinone oligomerization, an x-ray study , 1977 .

[76]  H. Högberg,et al.  Cyclooligomerisation of quinones , 1970 .

[77]  R. Lawton,et al.  Dibenzo[ghi,mno]fluoranthene , 1966 .

[78]  R. Scholl,et al.  Synthese des anti‐diperi‐Dibenz‐coronens und dessen Abbau zum Coronen (Hexabenzo‐benzol). (Mitbearbeitet von Horst v. Hoeßle und Solon Brissimdji) , 1932 .